BENGT HANSEN, KEMIRA

Boosting biogas blant performance with selected chemistry

5TH BIOGAS POWER ON, HAMBURG, SEPTEMBER 27-28 2023

Kemira

WE SERVE A WIDE RANGE OF BIOGAS CUSTOMERS

INDUSTRIAL BIOGAS PRODUCERS

Substrate: Mix of household waste, food waste, green waste, fat, slaughter waste etc

Driver: Energy production, bio-fuel production, CO₂ reduction

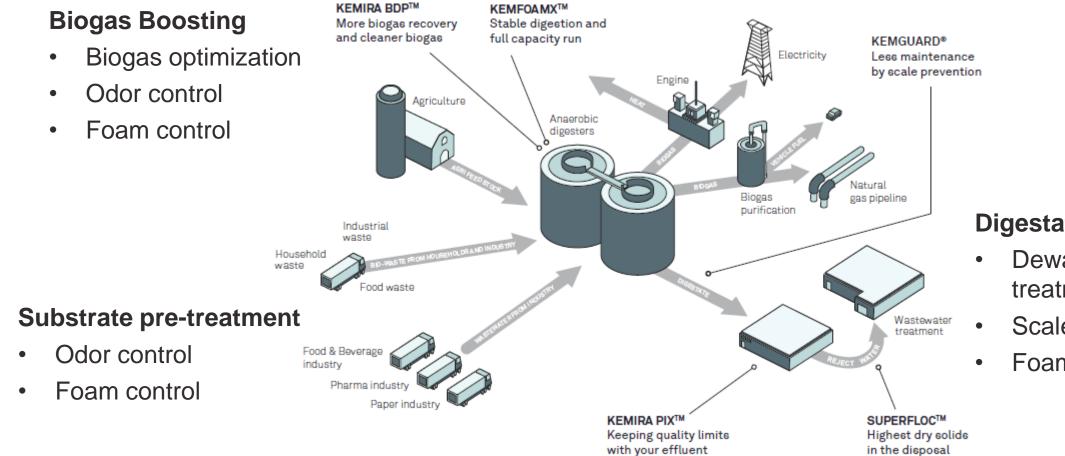
AGRICULTURAL BIOGAS PRODUCERS

Substrate:

Manure as the main substrate in combination with other agricultural substrates

Driver: Big livestock production, nutrient recovery, hygenization, energy production

ANAEROBIC WASTEWATER TREATMENT PLANTS


Substrate: High COD wastewater, low SS

Driver: Legislation, energy recovery

 6 CLEANWATER AND SANIFATION
 8 DECENT WORK AND ECONOMIC GROWTH AND PRODUCTION
 12 RESPONSIBIL CONSIMPTION AND PRODUCTION
 13 ACIMATE

Kemira is committed and contributes to the SDGs and have 4 goals in priority focus

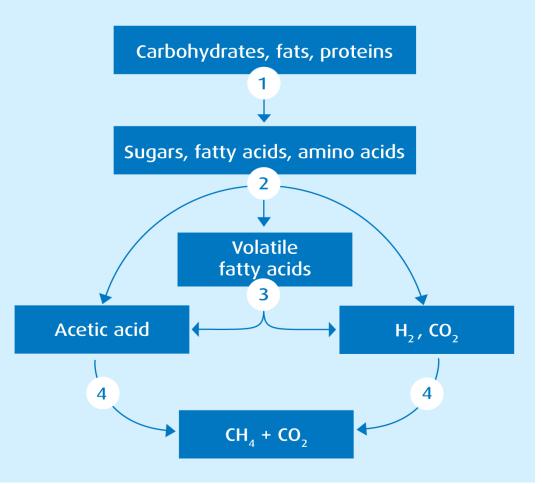
Kemira Biogas Program Overview

Digestate treatment

- **Dewatering & reject** treatment
- Scale control
- Foam control

The biogas process and its challenges

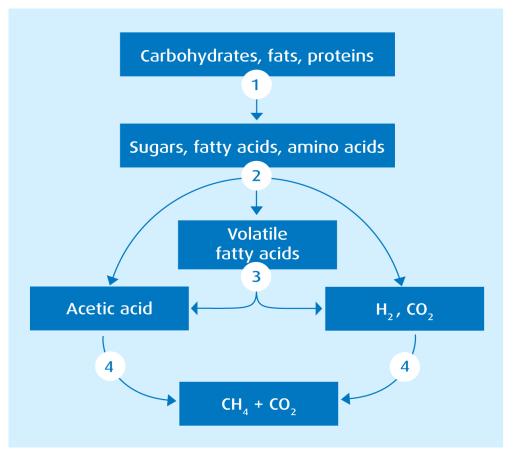
Hydrogen sulphide, H_2S


- H₂S is toxic and can inhibit the process in every step
- H₂S is also corrosive and can damage equipment and make gas cleaning unnecessary costly

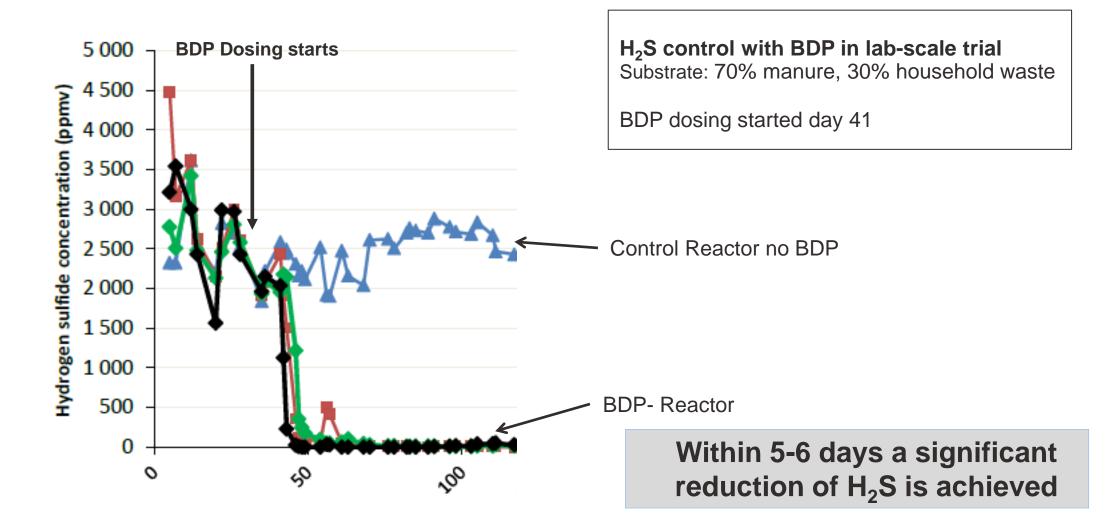
Ammonia, NH₃

• NH₃ is also very toxic

Poor capacity – unbalanced process


- Normally seen as poor yield and high VFA content
- In many cases due to lack of micro-nutrients

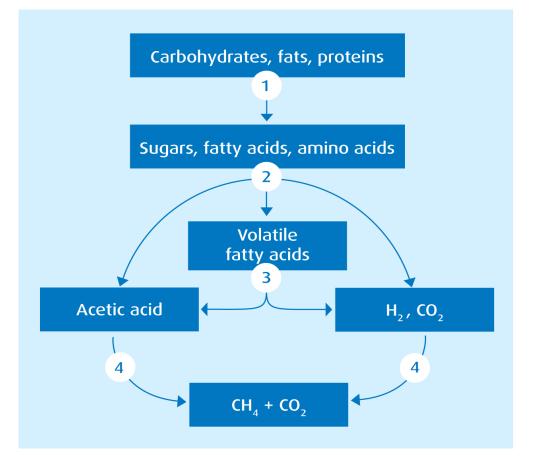
The patented BDP products* controls the challenges with iron (1-4)


Iron

- A key component in anaerobic digestion involved in all bacterial processes
- Precipitates S²- and inhibits the toxic effect of H_2S
- Iron chlorides are acidic and can reduce the NH₃ toxicity

*BIOGAS DIGESTION PRODUCTS – IRON CHLORIDES WITH VARIOUS CONCENTRATIONS OF SELECTED MICRO-NUTRIENTS

BDP treatment for H₂S removal gives fast results


The patented BDP products* controls the challenges with iron and micro-nutrients

Iron (1-4)

- A key component in anaerobic digestion involved in all bacterial processes (1-4)
- Precipitates S²- and inhibits the toxic effect of H_2S
- Iron chlorides are acidic and can reduce the NH₃ toxicity

Micronutrients (2-4)

- Like cobalt, nickel, zinc, iron, selenium, molybdenum and tungsten
- Essential components in enzymes and coenzymes in the methane formation (2,3,4)

*BIOGAS DIGESTION PRODUCTS – IRON CHLORIDES WITH VARIOUS CONCENTRATIONS OF SELECTED MICRO-NUTRIENTS

BDP products can improve in several ways

Addition of BDP products (Iron + Trace Elements) to biogas plants can improve:

- Stabilized digester performance due to reduced volatile fatty acids (VFA) levels
- Increased biogas production
- Increased substrate loading
- Reduction of hydrogen sulfides (H₂S)

Foam Control

- · Foam is a colloidal dispersion of gas in a liquid or a solid
- Pure liquids do not foam
 - Tap water does not foam when aerated, bubbles collapse immediately on surface
- To generate foam, a surface-active component is needed to stabilize the inclusion of dissolved and entrained gases
- Foam formation can cause severe problems in biogas processes. Pressure build-up, fouling, cavitation, incorrect level measurements, handling problems with substrate, etc...

Defoamers like KemFoamX 2500 gives the following benefits:

- Silica free
- Stabilized operation conditions
- Increased capacity

Scale control

- Anaerobic digestion of organic matter releases both cations such as Mg²⁺, Ca²⁺, Fe²⁺, NH₄⁺ and anions such as PO₄³⁻, CO₃²⁻
- Common scales in anaerobic digestion processes:

MgNH ₄ PO ₄ *6H ₂ O	(9
CaCO ₃	Ì
Fe ₃ (PŎ ₄) ₂ *8H ₂ O	(v

(struvite) (calcite) (vivianite)

- Scaling can occur in anaerobic digesters, pipes, centrifuges
- Scaling causes increased maintenance and energy costs and can be avoided by using antiscalants like Kemira KemGuard

Dewaterability of digestates

- Dewatering of digestate is normally more challenging than for municipal sewage sludge
- Hard to flocculate
- The main reasons are
- → Anionic charge of digestates is high
- The amount of large dissolved organic substances (e.g. biopolymers and humic kind of substances) is high

Characterization and selected chemistries improves the digestate dewaterability

- Dewaterability of a digestate can be estimated by measuring
 - Charge of the digestate
 - Organic content characterization
- Based on the results, the right products can be selected
- Flocculants are the base in dewatering
 - Typically polyacrylamides (Superfloc[®])
 - Bio-based products are entering the market
 - The combination of flocculants and coagulants gives cleaner reject water
 - Easier handling for nutrient recovery

CUSTOMER CASE

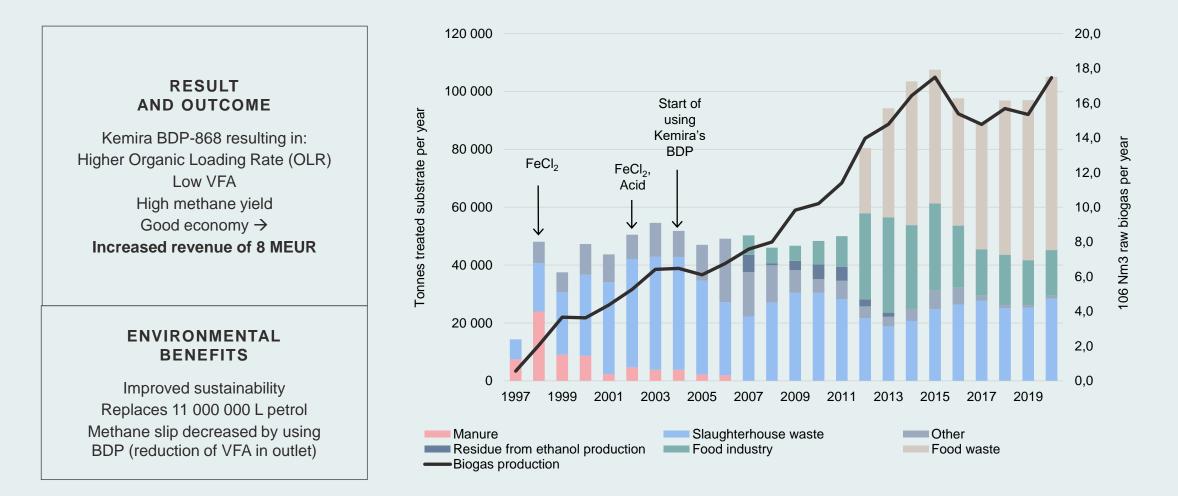
Tekniska Verken Biogas Plant, Sweden, in operation since 1997

Wet substrate	100 000 tpa
Substrate composition	Food waste 57%, Food Industry 16%, Slaughterhouse waste 26%, Plant substrates (fat, alcohol, glycerol) 1%
Biogas Production	17 500 000 Nm ³ biogas/year (65% methane)
Energy Production	110 GWh/year
Gas utilization	Compressed and liquified biogas (bio- LNG) for cars, busses, trucks and industry

Tekniska Verken Biogas Plant, Sweden

Problems during initial years of operation:

- Bad process performance •
- Foaming ٠
- High VFA-levels •
- Couldn't increase Organic Loading Rate ٠


Identified cause for problems

- High H_2S levels •
- Ammonia inhibition
- Lack of trace ٠ elements

42°C 00 30 days Biofertiliser 11111 SOLUTION Trace element addition (improve microbe activity) Kemira BDP product Iron addition (remove H₂S) HCI addition (decrease pH \rightarrow lower NH₃-inbibition)

Tekniska Verken Biogas Plant, Sweden

Wrapping up

- Chemistry can improve the performance of the biogas plants by
 - Making it easier to handle the substrate
 - Reduce the content of toxic substances in digester
 - Stabilize the biogas process and increase the yield
 - Reduce the gas cleaning cost and risk for corrosion
 - Save energy and maintenance costs
 - Reduce digestate volumes and simplify nutrients recovery

ankyou

Kemira

bengt.hansen@kemira.com