

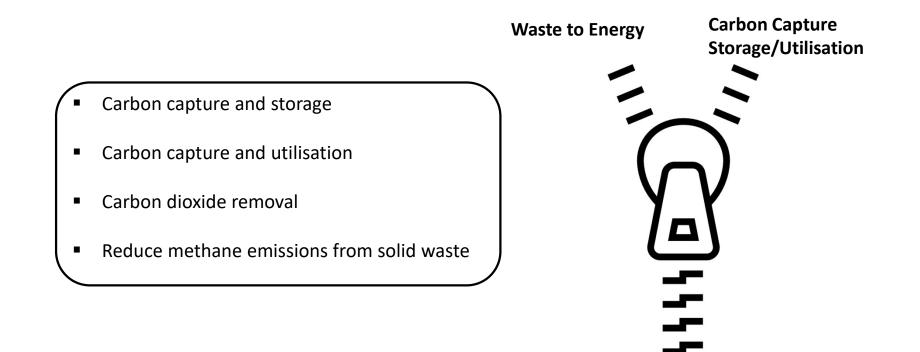
9 reasons why Carbon Capture should be prioritized in the Waste to Energy sector

17 May 2022

Keppel Seghers

Introduction: key take-away of 6th IPCC report conclusions (April 2022)

- Beside the common mitigation options*, other measures are recognized to be **critical** to meet net zero:
 - Carbon capture and storage
 - Carbon capture and utilisation
 - Carbon dioxide removal
 - Reduce methane emissions from solid waste



Sixth Assessment Report WORKING GROUP III – MITIGATION OF CLIMATE CHANGE

> * i.e. renewable energy, electrification of transport, energy efficiency in building or material efficieny in industry, nature based solutions...)

IDCC

Introduction: key take-away of 6th IPCC report conclusions (April 2022)

3

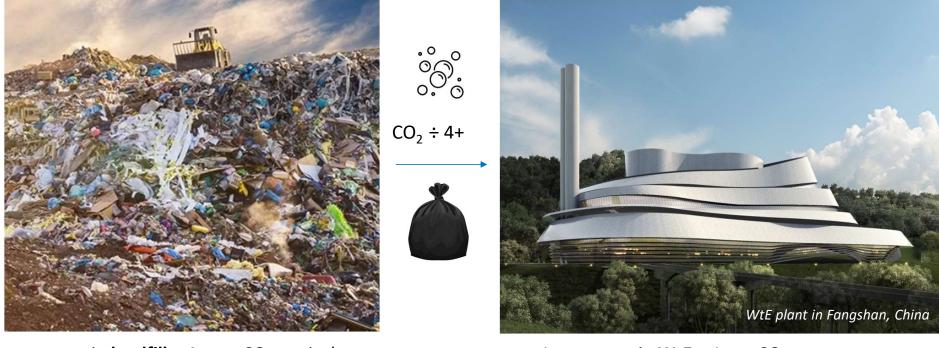
9 reasons why Carbon Capture should first be deployed in the Waste to Energy sector

WtE plant in Bao An, China 4

1. The low hanging fruit: methane

- Today, humankind produces 2 bio tonnes of municipal solid waste per year.
- 70% of it is still landfilled: 1,4 bio tonnes per year, or
 45 000 kg per second
- Landfilling produces methane*
- Methane is 80X more harmful to the climate than CO₂ in its first 20 years in the atmosphere

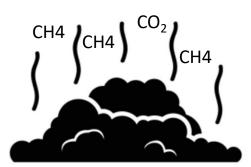
* Besides other dramatic consequences like air pollution, water contamination, soil degradation, plastic dissemination, disease/virus propagation, and definitive loss of the materials that are landfilled

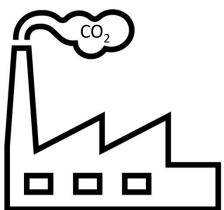

1. The low hanging fruit: methane

1 ton waste in **landfill** = 4+ ton CO_2 equivalent*

1. The low hanging fruit: methane

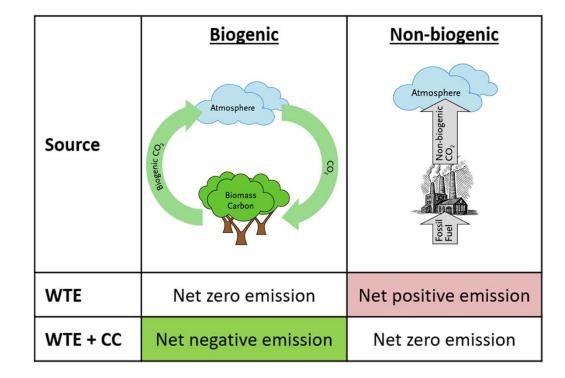
1 ton waste in **landfill** = 4+ ton CO₂ equivalent


1 ton waste in **WtE** = 1 ton CO_2


924+ Mt CO₂ eq/y

equivalent CO_2 reduction from avoided methane emissions between 2020 and 2030*

landfill

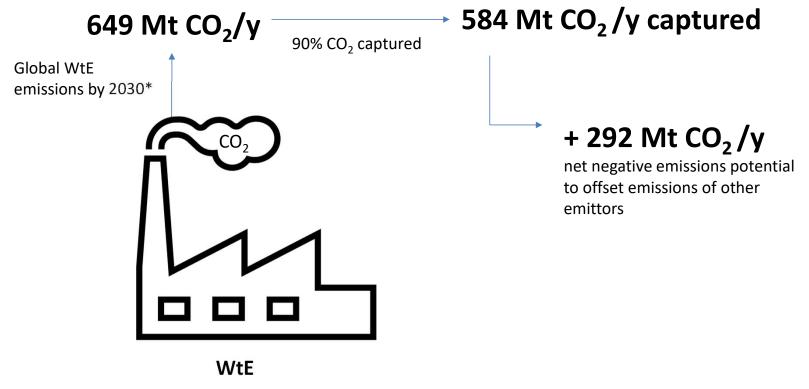


*note. 231 Mt waste should be diverted from landfill to WtE between 2020 and 2030

2. WtE + CC = CDR * = negative CO₂ emissions

- 50-60% of municipal solid waste is from biogenic source (wood, paper and food waste)
- WTE integrated with CC is uniquely positioned as one of the few negative CO₂ emissions technologies
- As a negative emissions technology, WTE integrated with CC will be able to off-set the emissions of other more challenging CO₂ emitters

* WtE = waste to energy CC = carbon capture CDR = carbon dioxide removal



3. CC integration in WTE is proven

	Project	Operation start	Technology	Scale	Status
Klemetsrud WTE in Oslo, Norway		2026	Amine	400 000 tCO ₂ per year	Starting construction
Duiven WTE, Netherlands		Q3 2019	Amine	100 000 tCO ₂ per year	Operational
Twence WTE, Netherlands		2014	Amine	2-3 000 tCO ₂ per year	Operational
		Q4 2023	Amine	100 000 tCO ₂ per year	Construction to commence in 2022

4. Material CO₂ reduction potential

* Source Ecoprog 2022

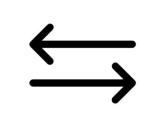
5. 24/7

- WTE plants run continuously
- Availability > 8000 hours/year
- Planned yearly shutdown
- → Continuous delivery of:
 - steamelectricity
 - CO₂

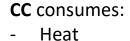
WtE plant in Singapore

6. Longevity of WtE

- WtE plants are backed up by long term contracts for waste supply and energy offtake
- WtE plants are local: close to the waste source and to the energy offtake
- No risk of delocatisation
- Some examples:
 - ISVAG in Belgium: built in 1989 and still operating smoothly
 - French WtE fleet: 127 plants with a average age of 27 years.


WtE plant in Antwerp, Belgium (ISVAG)

7. Synergies between WtE and CC


WtE produces:

- Heat
- Power
- Cooling
- Other utilities

Synergies save:

- CAPEX
- OPEX
- Space

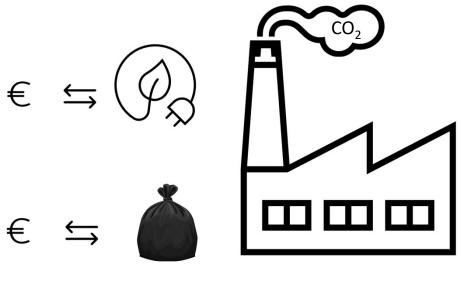
- Power
- Cooling
- Other utilities

Other potential synergies:

- Flue gas cleaning
- Carbonated residues for bricks
- Sodium bicarbonate for flue gas cleaning

8. Cost competitiveness

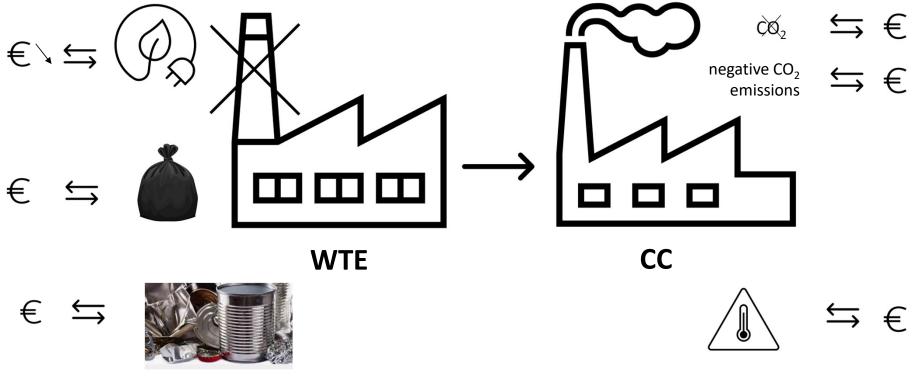
Sector	Estimated £/t CO ₂
Waste to Energy	66-110 £/t CO ₂
Iron production & other metal processing	80 £/t CO ₂
Cement & lime	80-140 £/t CO ₂
Other Non-metallic Minerals	140 £/t CO ₂


Factors influencing the total CC cost:

Comparison of CCUS Costs by Industrial sector Source: Eunomia report CCUS development pathway for the WtE sector

- Energy penalty ⇔ level of synergy with WtE
- Technology
- Solvent
- Distance from source to storage/utilisation site

9. New financial incentive for project development


WTE

Actual economic model of a WtE plant

9. New financial incentive for project development

New economic model of a WtE plant combined with CC

Keppel Seghers and carbon capture

- Feasibility study of the integration of CC plant in the Runcorn ERF / 3 different technologies (1mio ton CO₂/y)
- Multiple CC feasibility studies in WTE in the pipe Asia/UK
- Confidential dialogue with CC technology suppliers (amines, hot potassium, solid sorbents, etc...)
- o Discussing pilot plant scale projects
- Chairing CCUS working group in Industry Association ESWET (European Suppliers of Waste to Energy Technologies)

WtE plant combined with CC in Runcorn, UK

Contacts at Keppel Seghers – Carbon Capture

Andrew Wightman Business development & project management

andrew_wightman@keppelseghers.com

Jose Izquierdo Engineering, Technology & Innovation

Benoit Englebert Business development & Strategy

benoit_englebert@keppelseghers.com

jose_izquierdo@keppelseghers.com

Dr. Tom Croymans Technology, Innovation & Strategy

tom_croymans@keppelseghers.com