

Quantifying climate change impacts of CCS and CCU at waste incinerators

T.H. Christensen and V. Bisinella DTU Sustain, Department of Environmental Engineering, Technical University of Denmark In collaboration with Christian Riber and Tore Hulgaard, Rambøll Consultants and Anders Damgaard, DTU

Aim: Climate change impacts

Assess the impacts of amending MSWI with CC

How can CC apply to MSWI? What are the implications in terms of energy recovery for different MSWI configurations?

Assess the impacts of management options for the captured CO₂

- Storage
- Utilization:

Effects of the exchange with the energy system being in transition

How does the climate change impacts CCS and CCU change in different energy systems in which the technology operates?

Methods

- Life Cycle Assessment carried out in EASETECH
- Foreground system modelling: new MSWI with/without CC processes (9 configurations)
- Background data from Ecoinvent 3.6 (ancillary materials and energy)
- Waste composition varied
- Energy flows modelled
- Analysis of results:
 - $-CO_2$ balance
 - Energy recovery in terms of electricity and heat
 - Process contribution analysis
 - Scenario analysis (energy system, utilization options)
 - Sensitivity analysis (perturbation)

Methodological assumptions: Carbon

39% of the carbon in the waste is fossil61% of the carbon in the waste is biogenic

Climate change impacts are quantified according to the following characterization factors:

- 0 kg CO₂-eq/kg CO₂ for biogenic CO₂ emissions (e.g. from food waste)
- 1 kg CO₂-eq/kg CO₂ for fossil CO₂ emissions (e.g. non-recyclable plastic and synthetic textiles)
- -1 kg CO₂-eq/kg CO₂ for avoided emission of biogenic CO₂
- 0 kg CO₂-eq/kg CO₂ for avoided emissions of fossil CO₂

Similarly for chemicals and fuels substituted

We keep track of the fossil/biogenic content of emissions, products and fuels

MSWI configurations

MSW varied 9.3 -11.3 GJ/Tonne

MSWI technology varied:

- Flue gas condensation
- Heat/ no heat recovery
- w/wo CC
- w/wo heat recovery from CC unit

Carbon capture (CC) technology

• MEA:

 CO_2 is exposed to a monoethanolamine (MEA) solution forming a water soluble salt. After stripping at 100 - 140 °C and condensing of water, the >99% purity CO_2 is compressed. About 85-90% of the CO_2 is captured. The MEA is recovered and recycled, but some losses must be compensated. The electricity consumption is low, but the steam use for the MEA recovery is high (3700 MJ per tonne CO_2) after Reiter and Lindorfer (2017). The technology is well established.

175 kg 0.1 kg CO_2 Scrubber 1175 kg Heating CO_2 Electricity (compressed) 100 kWh Stripper 1000 kg Condenser Heat / steam 3700 MJ Compressor NaOH MEA Act C 4 kg 0.1 kg 0.1 kg

 CO_2

MEA / NH₂

Heat

Other:

- PSA (pressure-swing operation)
- Hydrate-based
- Cryogenic distillation
- Membrane filtration

CC amended to MSWI

Energy system scenarios

What if the energy system changes?

SCENARIO No.	1	2	3	4	5	6 BASELINE	7	8	9	10	11	12
Notes	Hypothetical	Hypothetical	Hypothetical	NETP 6DS single 2020-2030	NETP 6DS mix 2020- 2030	NETP 4DS mix 2020-2030	Hypothetical	NETP 2DS mix 2020- 2030	NETP 4DS single 2020-2030	Hypothetica I	Hypothetica I	Hypothetical
ELECTRICITY												
Share	%	%	%	%	%	%	%	%	%	%	%	%
Oil	100											
Hard coal		100			17							
Vatural gas			100	100	51	23		17				50-60 tir
Biomass with LUC							100					- roducti
Solar panels						45		29	100			Teuucii
Wind onshore					23	19		15		100		
Wind offshore					9	13		39			100	100
kg CO2-eq/kWh	1.20	1.04	0.70	0.70	0.54	0.21	0.21	0.16	0.09	0.02	0.02	0.02
HEAT												
Share	%	%	%	%	%	%	%	%	%	%	%	— 10-13 ti
Hard coal	100											reduct
Dil		100										
Vatural gas			100									
Biomass with LUC				100	100	54	100	42	100	100	100	100
ical pullps						40		00				100

Storage

- Captured CO₂ is transported and stored
- Transportation:
 - Different options (road tankers, railroad tankers, sea carriers, pipeline)
 - Environmental impacts: energy used for compression, emissions of CO₂ during loading/unloading and transport
 - Data from industries document losses of CO₂ 1-2% per 1000 km transported
 - We assumed 1000 km distance and 1% loss
- Storage:
 - Geological formations
 - We assume that CO2 is stored indefinitely (> 1000 years)
 - Loss 2% CO₂

DTU = **CCS: Climate change impacts: different energy systems**

17 May 2022 **DTU Sustain** MSWI and Cu.

Direct utilization: local use

Direct utilization: market use

Hydrogenated utilization -

	CH_4	CH ₃ OH	DME	нсоон
Names	Methane	Methanol	Dimethyl Ether	Formic Acid
	Methyl Hydride	Methylalcohol	Methoxymethane	Methanoic Acid
Chemical composition	CH_4	CH ₃ OH	CH ₃ OCH ₃	НСООН
		CH_4O	C ₂ H ₆ O	CH ₂ O ₂
H/C ratio in production process including	8	6	6	4
H ₂ O formation				
Molar mass, g/mol	16.04	32.04	46.07	46.03
Heat of combustion, kJ/mol	890	726	1455	255
Heat of combustion, kJ/g	55.5	22.7	31.6	5.5
Boiling point, °C	-164	65	-24	101
Melting point, °C	-182	-98	-141	8
Density (liquid), kg/l	0.42	0.73	1.97	1.22
Liquefaction	Liquid below -150°C at pressures above 46 bar	Liquid at ambient temperature and pressure	Liquid at ambient temperature at pressures above 6 bar	Liquid at ambient temperature and pressure
Storage and transport	Like natural gas	Like alcohol	Like propane gas	Like weak acid
Used as baseline chemical	Yes	Yes	Yes	Yes
Used as fuel	Yes,	Yes	Yes	Yes,
	in combustion			in fuel cells
Other uses		Anti-freeze		Leather industry
				Dyeing
				Rubber industry
				Food and fodder
Climate change characterisation factor if				
released into the atmosphere, kg CO ₂ -eq/ kg product	28	None	None	None
Carbon footprint of common production method				
kg CO ₂ -eq/ kg product	0.5	1.1	2.1	4.3

Hydrogenated utilization: chemicals

Hydrogenated utilization: fuels

DTU

Ħ

Avoided burden

Production of chemicals

1000 kg product	Methane	Methanol	DME	Formic acid
Inputs				
CO ₂ (kg)	3000	1450	2000	1000
H ₂ (kg)	500	190	260	0
H ₂ O (kg)	0	0	0	1410
Electricity (kWh)	60 ^a	20 ^a	30 ^a	12000
Steam/heat (GJ)	0	0	0	26
Outputs				
Product (kg)	1000	1000	1000	1000
H ₂ O (kg) -reusable	2500	570	1175	180
H ₂ (kg) – byproduct	0	0	0	92
O ₂ (kg) - byproduct	0	0	0	1090
CO ₂ (kg) - loss	250	75	85	40
Heat/steam (GJ)	9.0 ^b	1.4 ^c	2.5 ^d	0

Production of hydrogen

Flows for production of 1000 kg of H ₂	Hydrogen production (AEC electrolysis)
Inputs	
H ₂ O k(g)	16800
Electricity (kWh)	58000
Outputs	
H ₂ (kg)	1000
H ₂ O (kg)	7200
O ₂ (kg)	8400
Heat/steam (GJ)	62.4

Technical outcome per ton of waste

MSWIB	Unit	Ref	Methane	Methanol	DME	Formic Acid
MSWI, net electricity	kWh/tonne ww	618	-7650	-5945	-5897	-9553
MSWI, net heat	GJ/tonne ww	8	14	12	12	0
MSWI, CO ₂ air emissions, fossil	kg CO ₂ /tonne ww	373	82	72	69	69
MSWI, CO_2 air emissions, biogenic	kg CO ₂ /tonne ww	595	131	115	111	109
CC, ancillary material use (MEA)	kg MEA/tonne ww	0	4	4	4	4
H ₂ production, water use (ultrapure)	kg H ₂ O/tonne ww	0	-2303	-1811	-1796	0
H ₂ production, oxygen by-product	kg O ₂ /tonne ww	0	1152	905	898	897
H ₂ production and synthesis, water by-product	kg H ₂ O/tonne ww	0	1673	1099	1253	148
Synthesis, hydrogen by-product	kg H ₂ /tonne ww	0	0	0	0	76
Synthesis, product	kg product/tonne ww	0	274	567	411	823
Synthesis, CO_2 loss, fossil	kg CO ₂ /tonne ww	0	26	16	13	13
Synthesis, CO ₂ loss, biogenic	kg CO ₂ /tonne ww	0	42	26	21	20
Industry, product	kg product/tonne ww	0	-274	-567	-411	-823
Industry, oxygen	kg O ₂ /tonne ww	0	-1152	-905	-898	-897
Industry, hydrogen	kg H ₂ /tonne ww	0	0	0	0	-76
Industry, water	kg H ₂ O/tonne ww	0	-1673	-1099	-1253	-148

Climate change impacts

■ MSWI

MSWI, electricity production
 MSWI, hydrogen production
 Industry, product synthesis
 Industry, product emissions
 Industry, oxygen production

- MSWI, fossil CO2 emissions
 MSWI, heat production
 MSWI, product synthesis
- Industry, fuel provision
- Industry, water production
- Net
- MSWI, CC
 Industry, CC
 Industry, CO2 provision
 MSWI, CC product emissions
 Industry, hydrogen production

=

Direct utilization. local

--- Reference MSW

Climate change impacts Varying energy scenarios

With 5000 kWh/tonne MSW of electricity pulled from the grid for CCU, an incinerator treating *500,000 tonnes of waste per year import about* 2500 GWh electricity per year. In Denmark, a good land-based wind turbine delivers about 10 GWh electricity per year, corresponding to the annual consumption of about 2500 family houses. This suggests that the CCU at a large

incinerator may need electricity from **250**

wind turbines, corresponding to the electricity used by 600,000 family houses. If we assume an average of three persons per family home, and 270 kg per person of waste incinerated annually, the MSWI plant will use the same amount of electricity as the amount of electricity used domestically by the number of people it services with waste management.

Energy scenario 3

Energy scenario 5

Energy scenario 4

MSWI plant A

Conclusion/Discussion

Our results suggest:

- From a climate perspective it does make sense to CC at MSWI: Early phases as CCS evt as CCU if direct local uses can be identified, later when power is fully wind turbine based production of chemicals looks attractive
- Methanol and DME looks most promissing

However do our assumtrions stay relevant in the long term?:

- What are the substitution wrt chemicals in the non-fossil future?
- Maybe the long term reference will be alternative fuels and even further in the future what is the cheapest cost of CC in any industry

MSWI image wise:

- Plastic becomes less impotent for the MSWI image because impacts will be savings
- · But the less fossil content, the larger the saving

Read more!

CCS

Bisinella, V., Hulgaard, T., Riber, C., Damgaard, A., Christensen, T.H. (2021) Environmental assessment of carbon capture and storage (CCS) as posttreatment technology in waste incineration. Waste Management, 128, 99-113.

CCU

Christensen, T.H. and Bisinella, V. (2021) Climate change impacts of introducing carbon capture and utilization (CCU) in waste incineration. Waste Management, 126, 754-770.

CCS applied

Bisinella, V., Nedenskov, J., Riber, C., Hulgaard, T., Christensen, T.H. (2021) Environmental assessment of amending the Amager Bakke incineration plant in Copenhagen with carbon capture and storage (CCS). Waste Management & Research, .40, 79-95

