

FINDINGS FROM THE ARC CARBON CAPTURE PILOT PLANT & FUTURE CO₂ TECHNOLOGIES

HENRIK LYHNE GLOBAL SALES LEADER PENTAIR CARBON CAPTURE TECHNOLOGIES

Agenda

About Pentair

Carbon Capture Technology

- Introduction to Pentair

Pilot Projects

- The heart of CCSU at ARC insights from the carbon capture pilot plant and its impact on future plants
- Developments in process technology and solvents for carbon capture

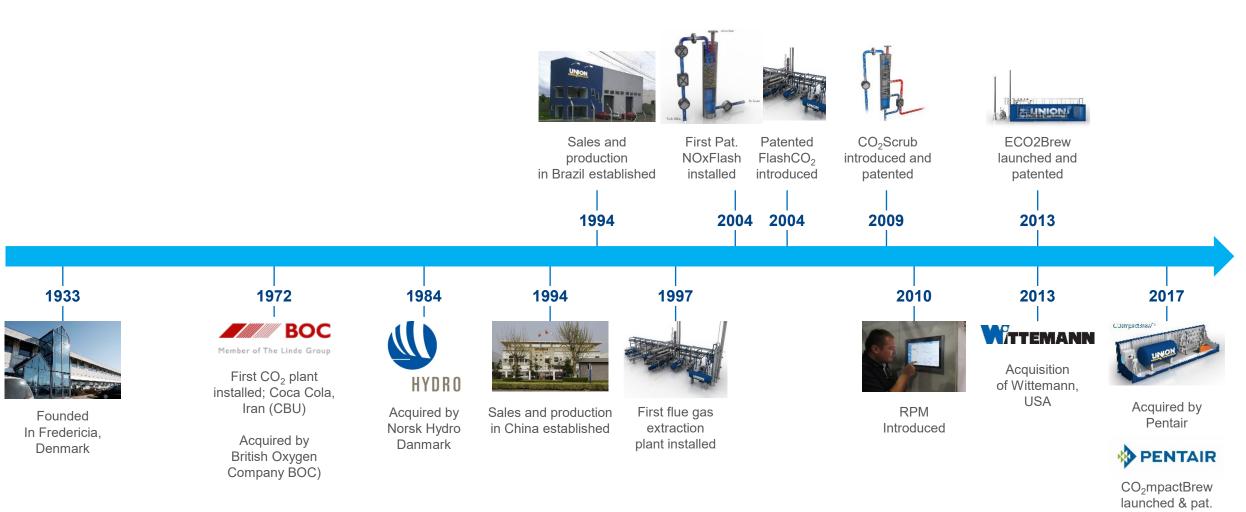
CO₂ Capture & Biogas

- Upgraded biogas – a readily-available CO₂ source

PENTAIR

11,250 employees serving customers at

120 locations in


25 countries with

www.pentair.com

>\$3.8B in revenue

PENTAIR

A long history, in short

A PENTAIR

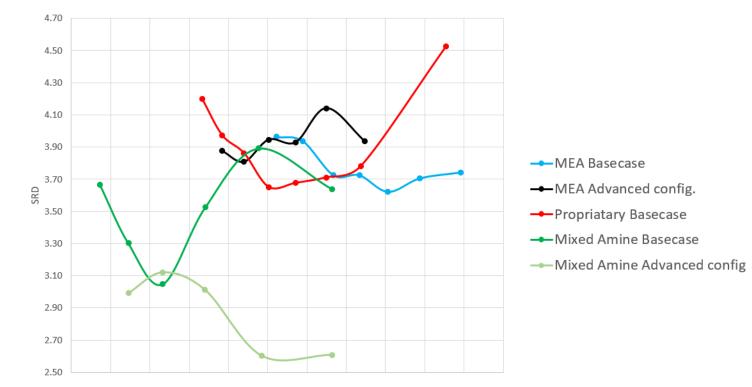
PENTAIR CARBON CAPTURE SOLUTIONS

With 90 years of expert know-how in CO_2 capture and recovery technology engineering and the delivery of over 75 membrane plants, 350 amine plants, and more than 2000 CO_2 plants worldwide, let's work together to tackle your emissions target.

Developing our Core Technology, using Open-Source Solvents

- Amine solvents will be the only available, properly tested Carbon Capture Technology for flue gasses, at least until 2030.
 - Further for Pentair AAT using **MEA** applies
 - Known behavior caused by flue gas impurities.
 - Predictable gaseous and liquid phase quality.
 - Avoid the risk of an un-proven technology in a full-scale carbon capture plant.
- The Pentair propriety AAT is used in industrial scale CCU plants for more than 25 years.
- Continuous research ensures ability to handle high concentrations of NO_X and O_2 .
- Developing new patents that can reduce the overall steam consumptions by up to 20%.
- And yes: we will be offering solutions with 2nd generation solvents.

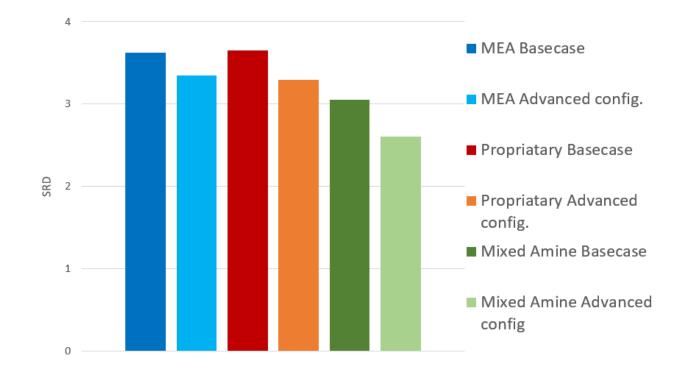
Amine absorption system


Our Core Propriety Technologies: NOXFlash for NOX handling; Reclaimer for solvent and corrosion control

Pilot Unit Campaigns

Specific Reboiler Duty (SRD) Findings

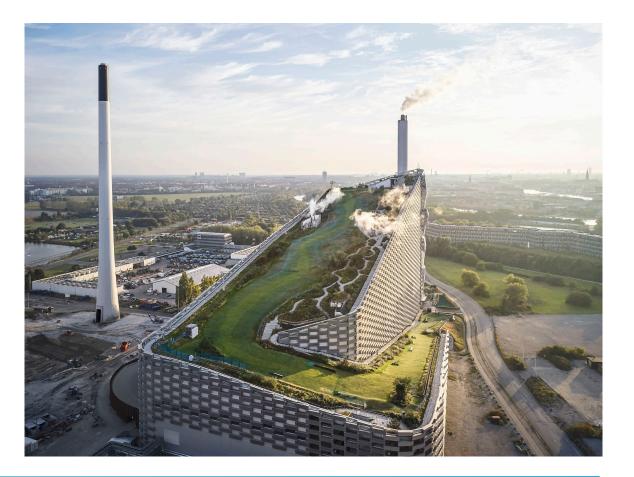
- Pilot unit results 2nd gen solvent
 - Reduces SRD by approx. 15% between cases with basic setup.
 - Reduces SRD by approx. 28% with advanced configurations.
- Most promising process configurations tested on the pilot is implemented in the design for the ARC demonstration plant with at bigger scale and commercial operation in mind.


Maturing new solvents, verification of results and upscaling

Pilot Unit Campaigns

Specific Reboiler Duty (SRD) Findings

- Performance of several solvents has been evaluated under same parameters for direct comparison.
- Best configurations tested on pilot are build into the ARC demonstration plant for commercial testing


Maturing new solvents, verification of results and upscaling

ARC Demonstration Plant, Copenhagen

Waste-to-Energy Industry

- The demonstration plant will be in operation during the summer 23', capable of capturing approximately 4 ton of CO₂ per day.
- Aiming at proving a **'net zero carbon capture'** solution, where the CO₂ plant is fully integrated with the heat recovery in the WtE plant.
- The captured CO₂ is **purified to beverage quality** for further use in industry and merchant market.

Maturing new solvents, verification of results and upscaling

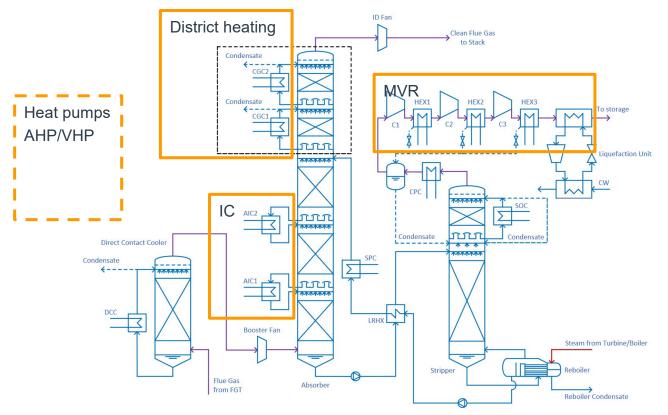
ARC – Skid manufacturing

Assembly in our own workshop

All process plant skids are assembled in own workshops

ARC Site

Installation in progress


Liquefaction and Amine front end

Heat integration at ARC

How to achieve Net Zero CC

 Several plant setup and heat integration scenarios have been evaluated in order to find the lowest levelized cost of carbon capture (LCCC)

Source: Jensen, E. H. (2021). *Heat Pump Integration and Techno-economic Analysis for Full-scale Carbon Capture System Amager Resource Center at* [Master thesis, DTU Mechanical Engineering].

Energy integration of district heating

Energy integration of ARC

How to achieve Net Zero CC

- Obvious "savings" will not necessarily give lower TOC when thoroughly analyzed.
- A standard module-based carbon capture plant is no viable solution to bring down cost - No two power plants will have same design OR operational conditions.

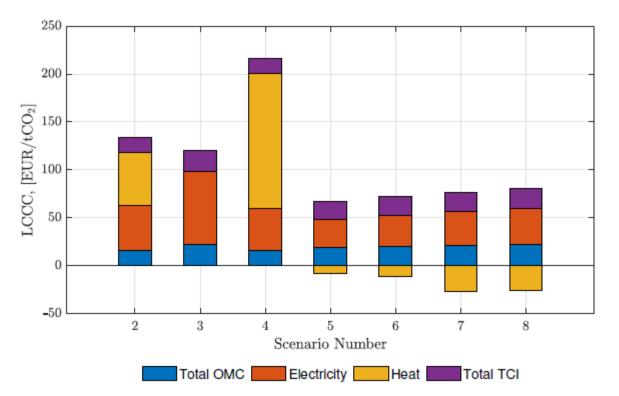


Figure 7: Total LCCCs with the different contributions from energy sales, OMC and initial investments.

Source: Jensen, E. H. (2021). *Heat Pump Integration and Techno-economic Analysis for Full-scale Carbon Capture System Amager Resource Center at* [Master thesis, DTU Mechanical Engineering].

Cost and heat integration of CC plant to be determined case-by-case

Technology and Solvent Performance Verification – Other Projects

- Hashøj
 - Biogas upgrading.
 - EUDP-funded project in cooperation with DTU, DGC.
 - Testing of MEA and other solvents, including 2nd Generation.
 - Aim at 30% energy saving (SRD).
- Aalborg Portland
 - Cement industry, CORT Project.
 - Lean vapor recompression, vacuum operation of the stripper column, and advanced heat integrations are some of the technologies that will be tested for the solvents on the CC pilot.
- Ørsted
 - Biomass-fired power plant, CORT project.
 - Testing site and details TBA.

Maturing new solvents and verification of simulation results in industrial environment

PENTAIR BIOGAS-TO-BIOMETHANE UPGRADING

Pentair Carbon Capture Solutions

Developed over time – driven by market demand

A Pentair CO₂ solution for every customer and every feed gas

Pentair CCUS from Biogas

Developed over time – driven by market demand

- Already more than 15 plants supplying food-grade liquid CO₂ from a Biogas source.
- Designed for two purposes: CCUS and/or as an add-on to existing biogas upgrading unit even for other make than Pentair.
- Technology and knowhow to handle CO₂ origin from amine-, water wash, membrane- and PSAbased upgrading units.

A Pentair CO₂ solution for every customer and every feed gas

CO2 Recovery from Biogas – Ultra high Purity 6000 Nm3/h + 48 tpd CO₂

- 3rd party amine biogas upgrading (owned by utility) & bolt-on for CO₂ recovery (owned by IG comp.)
- IG company has conducted HACCP to identify any risks possible by using biogas as food grade CO₂
- CO_2 -analyzer, online monitoring of the liquid CO_2 going to the storage tanks
- When tank is filled a batch number is generated due to traceability
- Additional analysis on each storage tank as well as the CO₂ pumped to the truck is conducted
- In case of excessive impurities, the plant stops and adjustments are made
- Destillation columns and pipes are emptied for a clean start up

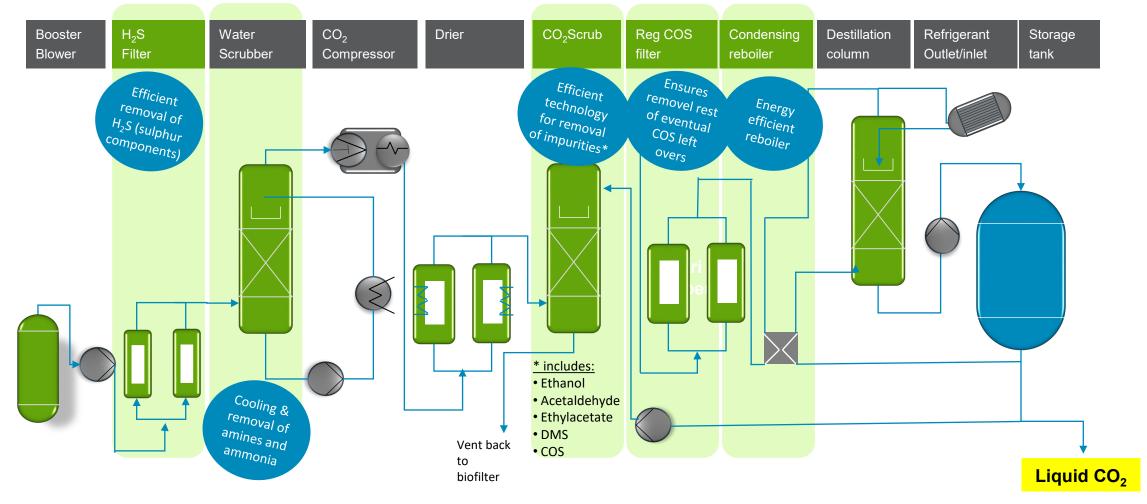
Feedstock: 85% manure 15% organic waste from industry

A Pentair CO₂ solution for every customer and every feed gas

natureener

Approved by

Danish Food


Administration

for food and

beverages

Robust, safe and flexible CO₂ Liquefaction

A Pentair CO₂ solution for every customer and every feed gas

