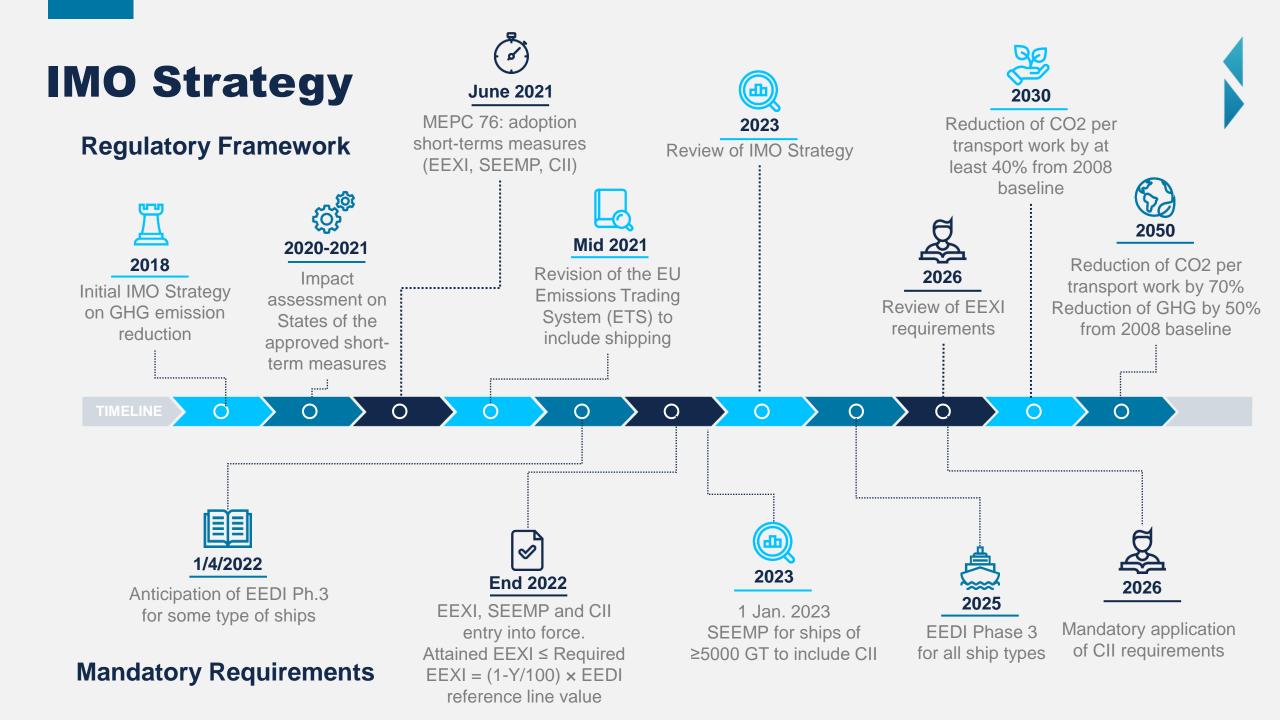
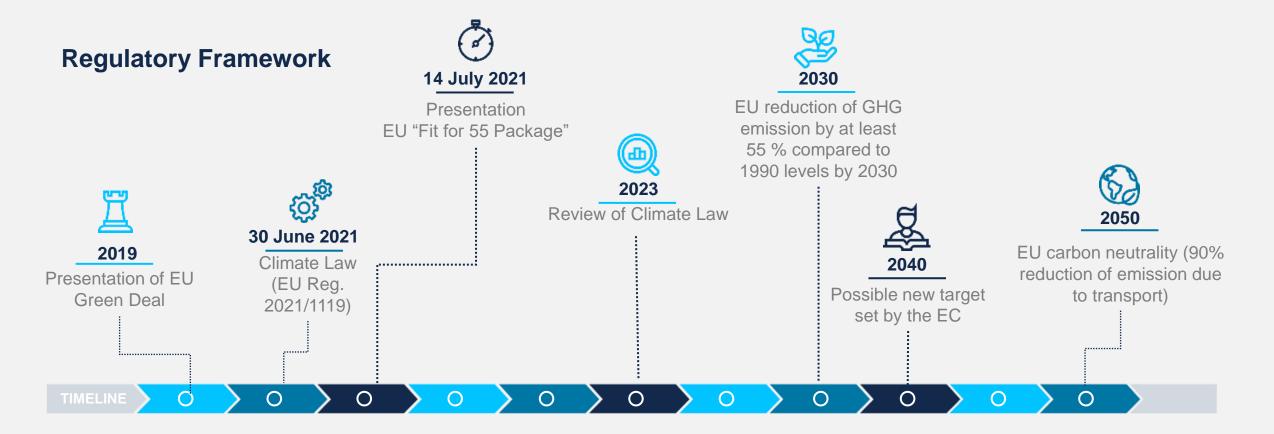
Rules framework for CO2 capture and storage on ships

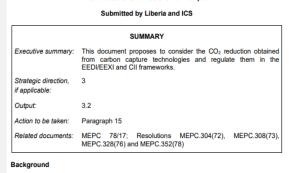
Patrizio Di Francesco EMEA Special Projects Manager


414



Energy transition & Decarbonization

EU Green Deal and Climate Law


CO₂ IMO Rules Framework

	Storage	Cargo Transport	Capture	Emissions	Port Disposal	INTERNATIONAL REMARTINE
IMO	SOLAS Chapter II-1	IGC Code MSC.370(93)	SOLAS Chapter II-1	MEPC 80 th CII/EEXI/EEDI	MEPC 80 th	MARINE ENVIRONMENT PROTECTION MEPC 79/7/4 COMMITTEE 10 September 2022 79th session Original: ENGLISH Agenda item 7 Pre-session public release: ⊠
		§ 17.21 and § 17.22		3-7 July 2023		REDUCTION OF GHG EMISSIONS FROM SHIPS Proposal for including carbon capture technologies in the IMO regulatory framework to reduce GHG emissions from ships

Carbon Capture and Storage (CCS) IMO regulatory objectives:

- to identify CCS technologies with proper Technology Level Readiness (TLR) for ships
- to recognize the CCS for the calculation of attained EEDI/EEXI subtracting the quantity of CO₂ captured per hour of operation taking into account the CO₂ storage capacity
- to recognize the CCS for the calculation of attained CII through the reduction of the total mass of CO₂ emitted using a CO₂ receipt note (similar to a BDN)
- to find acceptable CO₂ disposal methodologies
- to find acceptable criteria for the verification and recording of CO₂ disposal

 This document is presented in the context of the implementation of the Initial IMC Strategy on reduction of GHG emissions from ships (resolution MEPC.304(72)).

2 MEPC 76 adopted the amendments to MARPOL Annex VI introducing mandatory goal-based technical and operational measures to reduce carbon intensity of international shipping (resolution MEPC.328(76)) and the relevant technical guidelines supporting the EEXI and CII framework.

3 MEPC 78 started discussing, inter alia, proposals related to onboard carbon capture. Following the initial debate where interest for further consideration of the concept of onboard CO₂ capture was expressed, the Committee agreed to invite interested Member States and international organizations to submit further information and concrete proposals to future sessions (MEPC 78/17, paragraph 7.132).

I:\MEPC\79\MEPC 79-7-4.docx

CO₂ IACS Rules Framework

	Storage	Cargo Transport	Capture	Emissions	Port Disposal
IACS	Machinery Class Rules	CO ₂ / LPG Carriers Standards and Class Rules	Machinery Class Rules	MEPC 80 th CII/EEXI/EEDI 3-7 July 2023	MEPC 80 th

Carbon Capture and Storage (CCS) IACS regulatory objectives:

- to identify CCS technologies with proper Technology Level Readiness (TLR) for ships
- to perform risk assessment for each technology including compression or liquefaction systems for CO2 as well handling of leakages and discharge operations
- to evaluate gaps in the current IACS requirements and possible new requirements related to the safety aspects
- to issue suitable recommendations, unified requirements or unified intepretations

Why CCS may play a role in shipping?

Annual	production	of (Green	energy
--------	------------	------	-------	--------

Energy for production of green ammonia Green Ammonia for shipping Green Energy for ammonia for shipping

Power-to-methanol conversion efficiency Energy content of Methanol Green Methanol for shipping Green Energy for methanol for shipping 8,300 TWh

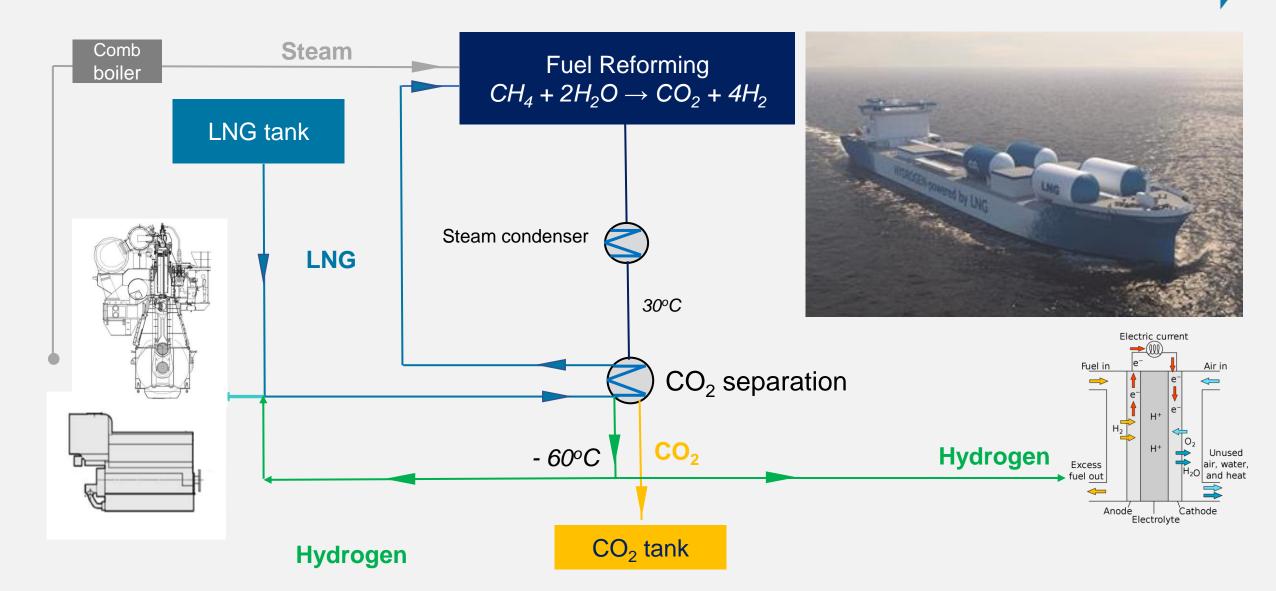
38.2	GJ/MT NH3
661	Million MT
7,015	TWh

48.2%
23.0 GJ/MT
618 Million MT
8,191 TWh

Not enough green energy for green fuels

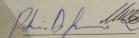
CCS Challenges in Shipping

- Marinization of CCS equipment for their use onboard ships
 - Familiarization of shipping stakeholders with the CCS technologies
 - Suitable technical requirements for safe storage and handling of liquefied CO₂
 - OPEX/CAPEX analysis on the basis of alternative fuel prices, CO₂ market and taxes
 - Availability of CO₂ disposal facility at called ports
 - Standard specification of CO₂ quality from CCS
 - Amount of tankers for the transport of liquefied CO₂


How does RINA tackle the CCS Challenges?

- Support to CCS equipment manufacturer and integrators for the compliance with maritime regulations
- Risk Assessment to arise awareness of safety hazards related to CCS
- Development of class rules for the validation of the CCS systems on ships
- Financial monitoring of prices and of tax regulations and economical feasibility study
- Support to Ports for the development of their CO₂ infrastructure (pipeline and storage)
- Support technical committee for the development of standards for CO₂ quality
- Development of new designs for LCO₂ carriers together with owners and yards (AiP)

Storage in LCO₂ Carriers - AiP


I <mark>,</mark> A	Security level: RIN
CER	RTIFICATE OF APPROVAL IN PRINCIPLE
	LCO2/LPG Type C Bi-lobe Tank AIP-MAC47121XG
his is to declare that the Appr	oval in Principle (AiP) of the following Project:
Project:	Type C Bi-lobe Tank for LCO2/LPG
Applicant:	HB Hunte Engineering GmbH Werftweg 15 26135 Oldenburg Germany
Manufacturer:	Class Approved maker for Pressure Vessel construction acc. to IGC Code: to be defined
Description:	IMO TYPE C Bi-Lobe Tank for Liquid Carbon Dioxide & Liquefied Petroleum Gas
Properties:	Max. Design Pressure $P_0 = 19,00[bar]$ Min. Design Pressure $P_{sd} = 0,30$ [bar] external Pressure Test Pressure = 28,50 [bar] Min/Max Temp. Tmin = -35,0 [°C] Tmax = +45 [°C] Transport Media: CO ₂ & LPG Cargo Density = 1100 [kg/m ⁸] Tank Capacity = approx. 4000 [m ⁸] Weight of tank steel structure = 698 [t]
	liance with the process described in the "RINA Guide for Approval in Principle 14), on the basis of the below listed technical criteria.
RINA RULES FOR THE CLASSIFICATION OF SHIPS 2021:	Part C; Chapter 1; Section 3 Part D; Chapter 1; Section 2 Part E; Chapter 9; Section 4
IMO Resolution MSC.370(93), IGC CODE, as amended:	Regulations for Cargo Containment
ssued in HAMBURG on M	RINA Services S.p.A. Giuseppe Russo ; Patrizio Di Francesco

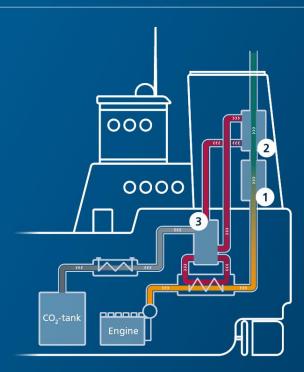
Steam Methane Reforming Concept

CO₂ Post Combustion Capture Concept- AiP

RINA Services S.p.A. Patrizio Di Francesco, Murat Kurt

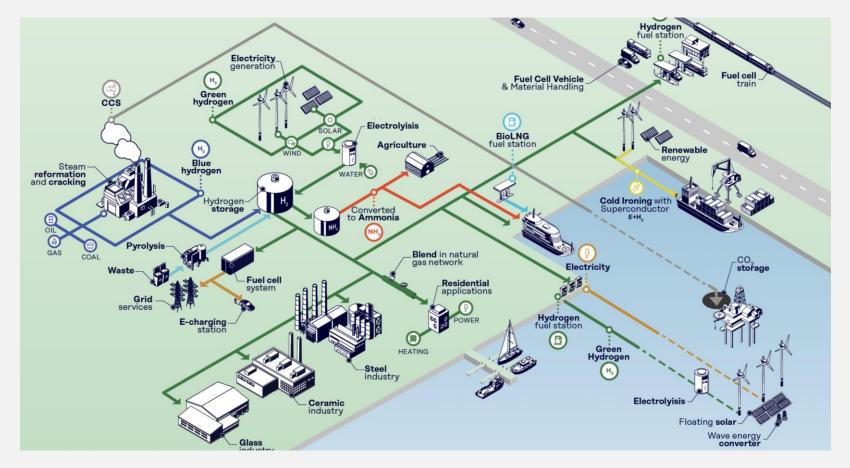
This certificate consists of this page and one Annex

RINA Services S.p.A. Via Consica, 12 - 16128 Genova Tel +39 010 53851 Fax +39 010 5351000



SHIP BASED CARBON CAPTURE

CO₂
 Clean exhaust
 Hot exhaust
 Solvent
 SOx Scrubber
 CO₂ Scrubber
 CO₂ Stripper


RNA

CO₂ Sequestration and Well Stimulation

Guide for Installation on Deck of Equipment for Well Stimulation and

CO₂ Sequestration Activities Effective from 1 November 2021

for Offshore Support Vessels performing well stimulation and injection activities for the sequestration of CO_2 into depleted gas fields on temporary basis.

Services Map for CO₂

Supporting the entire value chain from CapEx to OpEx as System Integrator

- Technology Scouting & Technology Observatory
- TRL evaluation e Technology Selection
- Market & Sector Analysis for Utilization
- Patent analysis
- Research & Development (EU)
- Technology Qualification & Approval In Principle
- Conceptual, Feasibility Studies & FEED for decarbonization
- Innovation assessment
- Technical-Financial-Operational Feasibility
- Investment (CapEx/OpEx) and Business Plan optimization

- Cost-benefit analysis
- Testing for CO2
- Green Finance
 - Business planning & modeling
 - Relevant costs and cost efficiency
 - impact on the competitiveness and on sustainable growth
- Sector coupling scenario analysis
- Circular Economy analysis for CO2 (Capture & Utilization)
- Map of industrial processes for Carbon Capture and Utilization plan
- Engineering Consulting services and Asset Repurposing for CO2

Thank you

Patrizio Di Francesco pfr@rina.org +49 177 844 2961

