SOLID OXIDE ELECTROLYSIS EXPLAINED

TOPSOE

Hydrogen & P2X June 15-16th 2022, Copenhagen, Denmark Christian Wix Product Owner, PtX

TOPSOE AT A GLANCE

SECTORS RESPONSIBLE FOR A LARGE PART OF GREENHOUSE GAS EMISSIONS

CREATING NEW SOLUTIONS FOR HARD-TO-ABATE SECTORS

Source: Climate Watch, the World Resources Institute (2020)

OUR AREAS OF EXPERTISE

TOPSOE HAS THE NECESSARY BUILDING BLOCKS

Renewable fuels

Methanol

Ammonia

NH₃

Carbon monoxide

TOPSOE'S POWER-TO-X SOLUTIONS ACCELERATE THE ENERGY TRANSITION

SOEC'S ADVANTAGES BECOMES SIGNIFICANT AT PLANT LEVEL

DYNAMIC AMMONIA PRODUCTION FOR FLUCTUATING POWER SUPPLY

Advantages Power-to-ammonia

- Fully flexible operation 10-100% plant load
- No hydrogen storage
- Store energy as ammonia
- Grid balancing

8

TOPSØE AMMONIA CRACKING TECHNOLOGY FROM OLD TO NEW

10 - 500 MTPD hydrogen:

- Operation pressure 30-50 barg
- PSAs for hydrogen separation – 99.9% purity
- 0 ppm ammonia in H₂
- Approximately 10% energy loss on LHV basis

9

TOPSOE HIGH EFFICIENCY AMMONIA CRACKER ENSURES NEAR TO FULL CONVERSION OF THE AMMONIA FEED TO HIGH PURITY HYDROGEN

THE DEVELOPMENT PATH OF TOPSOE'S SOEC TECHNOLOGY

Solid Oxide Fuel Cell (SOFC) developed in the '80s

- SOFC cell and stack can also be used as SOEC
- Electrolysis of both water and CO₂

Focus on SOEC since 2015

- Demonstration and industrial SOEC units since 2015
- SOEC cell and stack further improved

Design of 500 MW SOEC stack manufacturing plant

- Scheduled start-up in 2025
- Expansion to 1.1 GW/5 GW

HOW SOEC ELECTROLYSIS WORK

CARBON MONOXIDE PRODUCTION FROM CARBON DIOXIDE AND RENEWABLE POWER

SOEC IS SIGNIFICANTLY MORE EFFICIENT THAN LOW TEMPERATURE ELECTROLYSIS

CARBON MONOXIDE PRODUCTION FROM CARBON DIOXIDE AND RENEWABLE POWER

Demo site at National Lab, Denmark

- 50 kW Biogas upgrade
- 50 kW Ammonia Synthesis

Operating plant at customer site, USA
2 x750 kW ultrapure CO production

A 20 MW SYSTEM WITH SOEC TECHNOLOGY

SOEC ELECTROLYSIS OFFERS A WIDE RANGE OF ADVANTAGES

Lower power consumption

- SOEC has the highest efficiency of all electrolysers
- Without heat integration, SOEC is 20 % more efficient than alkaline and PEM
- With heat integration, SOEC is 30 % more efficient than alkaline and PEM

Non noble materials

- SOEC consists of materials that are abundant in nature and can therefore easily be scaled up without material availability constraints
- The use of non noble materials will benefit cost as the raw materials will not become more expensive due to scarcity

Syngas creation

- In addition to the electrolysis of steam, SOEC can electrolyse CO₂ and thereby generate CO
- CO₂ electrolysis enables carbon capture & utilization from a point source and provides advantages for making eFuels such as eJet, eDiesel and methanol

THANK YOU. ANY QUESTIONS?

Presenters name xxxx@topsoe.com