Hydrogen storage On the critical path to deliver ambitious hydrogen strategies

Storengy projects in France and Germany

Hydrogen and P2X
June 15th 2023

Some key questions when talking about hydrogen storage

- What will be **the role** of large-scale hydrogen storage?
- What are the available technologies?
- What is the underground potential?
- Will conversion of existing sites be enough?
- What we need to do to succeed?

storengy

Quick reminder: the various roles of large-scale gas storage

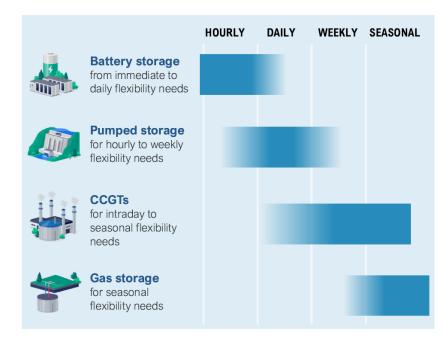
Volume risk management

- Matching demand and supply:
 - ✓ seasonal demand patterns
 - ✓ volatile demand of gas for power
 - ✓ Different supply profiles (pipe, LNG)
- ✓ Insurance against temporary disruption (production or transport)

Economic and financial role

- Reduce the overall system cost
- ✓ Hedge against price risk

Intraday flexibility



Multiday and multiweek flexibility

Multi-month flexibility

Simplified representation of available gas and power flexibility sources :

Source: ENGIE, 2023 market update

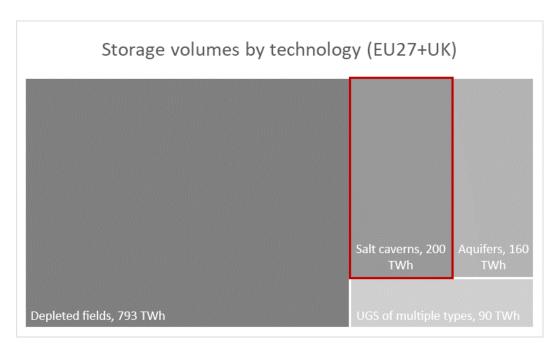
storengy

Simplified comparison of methane and hydrogen offer and demand

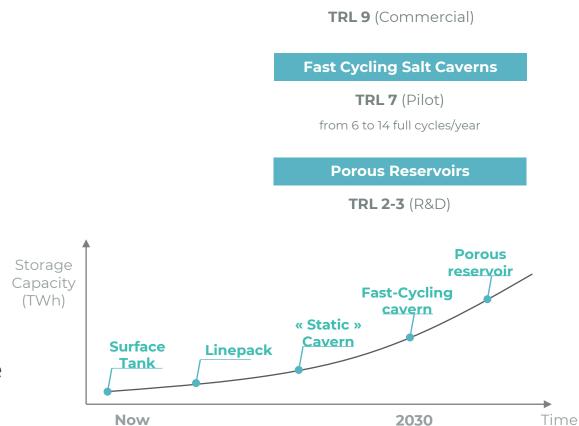
Comparison of anticipated offer and demand patterns show a higher need for flexibility compared to today (in relative terms)

	Methane infrastructure		Hydrogen infrastructure	
	Consumption	Production	Consumption	Production (for electrolytic H2)
Drivers of hourly flexibility needs (and below)	Daytime vs nighttime activities (residential, tertiary)	Methane production and imports are largely constant over these timescales (except in cases of maintenance)	Daytime vs nighttime activities (residential, tertiary)	RES production variability (<mark>solar PV i</mark> n particular), network congestions
Drivers of weekly flexibility needs	Weekday vs weekend activities (residential, tertiary)		Weekday vs weekend Activities (residential, tertiary)	RES production variability (<mark>wind power</mark> in particular) , network congestions
Drivers of seasonal flexibility needs (and higher)	++ Thermosentivity (mostly residential)		Thermosentivity (mostly residential) Residential consumption?	RES production variability <mark>(hydro, </mark> wind and solar PV), network congestions

Additional drivers of flexibility needs, specific to electrolytic hydrogen

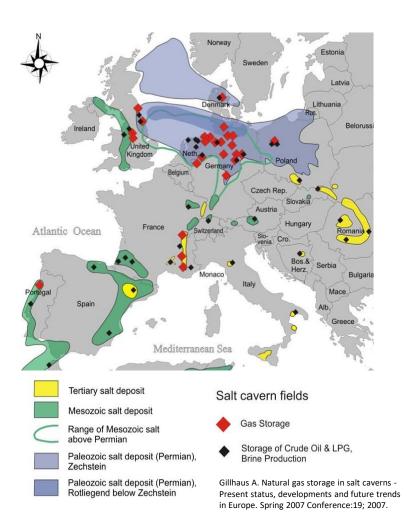

■ Artelys | SOLUTIONS EN OPTIMISATION

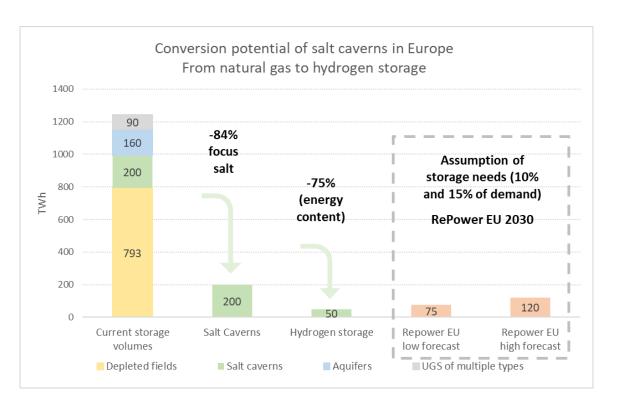
Study commissioned by GIE + personal notes


12

What are the technical solutions to store hydrogen?

Three technologies are used today to store natural gas underground:


Salt caverns are the best option to store hydrogen in the short term


Salt Caverns

06 2023 – Hydrogen and P2X 5to

Europe's underground storage potential

- Hydrogen has a **lower energy content** than natural gas
- Conversion of all salt caverns represent 4% of actual capacity

RePowerEU 2030: H2 demand = 20 Mt = 780 TWh

06 2023 – Hydrogen and P2X 6 storer

Storengy hupster opposet, France

2020

2021

1st demonstrator of

Hydrogen green

storage

2022

2023

Definition of the regulatory framework for the project & signature of the consortium agreement

by all partners

Start of the engineering studies.

Construction of the electrolysis unit for onsite green hydrogen production.

Experimentation of hydrogen storage in a salt cavern and hydrogen production.

13M€.

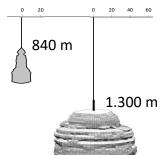
Total budget:

400_{kg/day}

1MW

electrolyser

5-million-euro granted by the Fuel Cells and Hydrogen Joint Undertaking FCH JU)


Production of 400 kg of hydrogen per

day

(the equivalent of the consumption of 16 hydrogen buses)

3 tons

of green hydrogen to be stored during the first stage

Typical cavern in Etrez

Geometric volume: 570 000 m3

Total gas: 4.75 Bcf

Equiv H2: up to 6.3 ktons

HyPSTER cavern

Geometric volume: 7 000 m3

Total gas: 45,5 MMcf

Equiv H2: up to 44 tons

Hypster is a project co-funded by the European Union's Horizon 2020 Programme through the Fuel Cells Hydrogen Joint Undertaking (FCH-JU) under grant agrement number 101006751

Consortium Partners

H2 & Subsurface expertise

Regulation & Safety

Storage replication potential

Technical and economic assessments

elementenergy

Bacteriology Purification

Communication

Coordination

elementenergy

2 Strategic partnerships

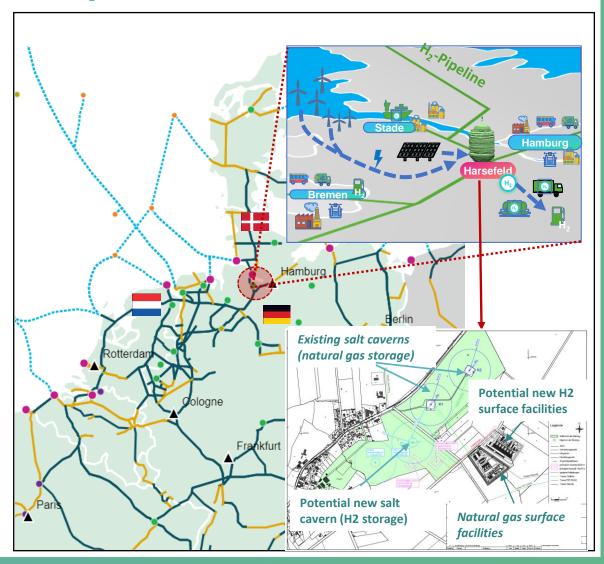
06 2023 - Hydrogen and P2X

SaltHy project in Harsefeld, Germany

Hamburg / Stade region

At the crossroads of Germany, Denmark and the Netherlands

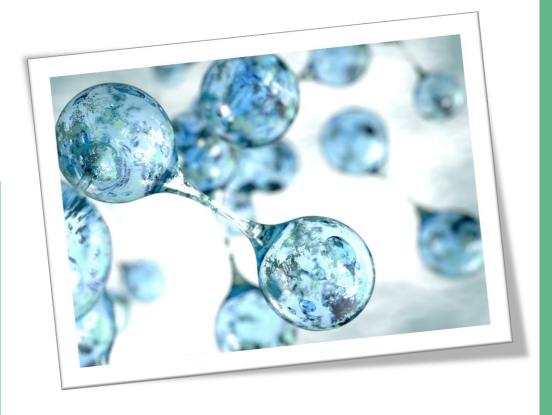
Phased project:


• 1st phase:

one new salt cavern and dedicated surface facilities to store 100% H2

Working Gas Volume: 5.200 t / 205 GWh, Maximum Inj. / With. rates: 17 GWh/d

Target date for 1st phase: 2030


- 2nd phase with another cavern and necessary surface equipment
- 3rd phase: repurposing of existing natural gas facilities (two caverns)

storengy Acompany of engine

What we need to succeed

- Investment on predevelopment, pilot projects and R&D
- A holistic power and "gas" infrastructure approach
- A clear and supportive regulatory context
- Adequate permitting processes

Acompany of engine

Thank you!

Catherine Gras
CEO Storengy UK & Germany
catherine.gras@storengy.de
www.storengy.de
www.storengy-h2.de