

PREMIUM INSIGHTS INTO PROCESS

Hydrogen & P2X Presentation

Advanced Spectroscopic Solutions for H2 purity measurement at ppb and ppt level.

Agenda

Introduction to Process Insights

APIMS – ppt level impurities

Fuel Cell – ppb level impurities

Process Insights Value

- Analytical instrumentation solution provider with depth and breadth to cover many industries for process control and safety monitoring
- Highly reputable brands with differentiated products
- Commitment to innovation and continuous improvement
- Regional sales & service teams providing unparalleled customer support
- Global presence with regional sales & service teams to provide unparalleled customer support
 - PI Americas HQ in Houston, Texas
 - PI EMEA HQ in Frankfurt, Germany
 - PI APAC HQ in Suzhou, China

Process Insights Technologies

()

PREMIUM INSIGHTS INTO PROCESS

Low Level "ppt" Impurity Detection

Extrel APIMS for Semiconductor Bulk Gas Purity

Target markets and applications

000000	

Bulk Gas Quality Control and Process Control in Semiconductor and Electronics

()

NEW Extrel VeraSpec APIMS

Advantages for Contamination Control:

- Real-time, multi-species monitoring for ALL Critical Impurities in bulk electronic gases including trace O₂, H₂, H₂O, CH₄, CO, CO₂, Xe and more
- Well-established, powerful mass spectrometry technology
- Developed in conjunction with UHP gas analysis experts at Tiger Optics
- Unparallel measurement range from PPT to 100% with unique dual-source ionization configuration
- Easy to use with integrated User Interface and scheduled automated calibrations

extrel **Tige tics**

Industry-best customer support and applications team

APIMS System Detection Limits

Trace Impurity*					
nace impulty	N ₂	Ar	Не	H ₂	0 ₂ **
Hydrogen (H ₂)	100 ppt	100 ppt	50 ppt	n/a	500 ppb
Oxygen (O ₂)	10 ppt	10 ppt	10 ppt	10 ppt	n/a
Methane (CH ₄)	10 ppt	10 ppt	10 ppt	10 ppt	100 ppb ¹
Water (H ₂ O)	10 ppt	10 ppt	10 ppt	10 ppt	100 ppb ¹
Carbon Monoxide (CO)	50 ppt	10 ppt	10 ppt	50 ppt	100 ppb ¹
Carbon Dioxide (CO ₂)	5 ppt	5 ppt	5 ppt	5 ppt	100 ppb ¹
Nitrogen (N ₂)	n/a	200 ppt	10 ppt	150 ppt	100 ppb
Argon (Ar)	200 ppt	n/a	10 ppt	50 ppt	75 ppb

 $(\boldsymbol{\Sigma})$

*Additional impurities are available

** Impurities in O_2 are measured using the included EI source

¹ See next slide for additional complimentary products from Tiger Optics for lower detection limits in O2

Easy to Use

- Extrel's Questor5 process control software designed for continuous gas monitoring
- Integrated User Interface and scheduled automated calibrations
- Unlimited configurable data tags and alarms
- External analysis triggers
- Automatic removal of spectral overlap
- Full network accessibility
- 21 CFR Part 11 compliant
- Modbus, digitial I/O, analog I/O, and OPC external communications available

Timestamp: 11-10-2021 21:22:40				
Impurity	Concentration	Impurity	Concentration	Instrument Statu
Hydrogen	0 ppb	Oxygen	7.44 ppb	
Methane	0.02 ppb	Carbon Dioxide	0.31 ppb	Sample Flow
Water	7 ppb	Krypton	0.01 ppb	
Carbon Monovido	7 nnh	Venon	0.01 pph	
tal impurities	on dioxide	ACHOIT	11/10/21 20:22:4 <u>3</u>	3.339 Carbon dioxide
tal impurities	on dioxide	ACHOI	11/10/21 20:22:4 <u>3</u>	Carbon dioxide 3045 Average: 0.3039
stal impurities	on dioxide	ACTION 1	0.01 ppb 11/10/21 20:22:43 0.	Carbon dioxide Average: 0.3039 Water Average: 7.0007
otal impurities Carb	on dioxide Water		0.01 ppb 11/10/21 20:22:43 0. 7.	Carbon dioxide Average: 0.3039 Water Average: 7.0007 Oxygen Average: 7.4362
otal impurities Carb	on dioxide Water		0.01 ppb 11/10/21 20:22:43 0. 7.	8.339 Carbon dioxide 0.45 Average: 0.3039
otal impurities Carb	on dioxide Water Xxygen ethane		0.01 ppb 11/10/21 20:22:43 0. 7.	3.330 Carbon dioxide 0.45 Average: 0.3039 0.45 Average: 0.3039 0.47 Average: 7.0007 0007 Oxygen Average: 7.4362 Methane Average: 0.0151 Average: 0.0151
otal impurities Carb Carb	on dioxide Water bxygen ethane		0.01 ppb 11/10/21 20:22:43 0. 7. 7. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	Carbon diovide Average: 0.3039 Water Average: 7.0007 Oxygen Average: 7.4362 4362 Methane Average: 0.0151 Xrypton Average: 0.0059
	Impurity Hydrogen Methane Water	ImpurityConcentrationHydrogen0 ppbMethane0.02 ppbWater7 ppb	ImpurityConcentrationImpurityHydrogen0 ppbOxygenMethane0.02 ppbCarbon DioxideWater7 ppbKrypton	ImpurityConcentrationImpurityConcentrationHydrogen0 ppbOxygen7.44 ppbMethane0.02 ppbCarbon Dioxide0.31 ppbWater7 ppbKrypton0.01 ppb

Low System Maintenance

- Dual ion source for convenience of diagnostics
- Heated API ion source
- Built-in software calibration procedures
- Oil-free pumping system
- Low maintenance frequency once per year

 $(\boldsymbol{\Sigma})$

(く)

Low calibration frequency

System Specifications

Dual Ionization Source	Atmospheric Pressure Ionization (API) / Electron Ionization (EI)
API Source Background	Less than 1 ppt
Mass Range Options	1-500 amu (other mass ranges available)
Quadrupole Tri-Filter Rod Diameter	19 mm
Detector	Pulse Counting Electron Multiplier
Detection Noise	< 3 counts in 10 ⁶
Detection Limit	< 5 ppt (component dependent)
Analysis Time	< 1 Second per Component
Sample Switching Time	15 Minutes to < 1 ppb
Bulk Gas Suitability	H ₂ , N ₂ , He, Ar, O ₂
Impurities Monitored	H_2 , CO, CO ₂ , H_2 O, O ₂ , CH ₄ , Kr, NH ₃ , Xe, C ₂ -C ₆ (other impurities available)
Dimensions	74" (H) x 28" (W) x 26" (D) (1.9 m x 0.7 m x 0.7 m)
Maximum Number of Components	Unlimited
Maximum Number of Digital I/O	16 (standard) Unlimited available
Maximum Number of Analog I/O	20 (standard) Unlimited available
Communication Protocols	Modbus, OPC, digitial I/O, analog I/O

 \bigcirc

PREMIUM INSIGHTS INTO PROCESS

Solutions for Hydrogen Purity at ppb level

Analysis of Hydrogen for Fuel Cell Applications

Purity Requirements for Fuel Cell H₂

Molecule	Limit
Helium (He)	300 ppm _v
Nitrogen (N ₂)	300 ppm _v
Argon (Ar)	300 ppm _v
Methane (CH ₄)	100 ppm _v
Moisture (H ₂ O)	5.0 ppm _V
Oxygen (O ₂)	5.0 ppm _V
Total Hydrocarbons (ex CH ₄)	2.0 ppm _V
Carbon Dioxide (CO ₂)	2.0 ppm _V
Carbon Monoxide (CO)	0.2 ppm _V
Formaldehyde (CH ₂ O)	0.2 ppm _V
Formic Acid (CH ₂ O ₂)	0.2 ppm _V
Ammonia (NH ₃)	0.1 ppm _V
Total Sulfur (H ₂ S, SO ₂ , COS,)	0.004 ppm _V

 $(\boldsymbol{\Sigma})$

(🗸)

Considerations

- Effect of the impurity on the fuel cell
- Sensitivity of the fuel cell to specific impurity

Complete Tiger Optics/Extrel Portfolio for H₂ Purity

Summary of SAE J2719 / ISO 14687 Requirements and Analyzer Detection Limits

Contaminant	SAE J2719/ ISO 14687 Limit	Tiger Optics LDL (3σ)	Tiger Optics Analyzer	Extrel/Other LDL (3σ)	Extrel/Other Analyzer
Helium (He)	300 ppm			0.5 ppm	MAX300-LG
Nitrogen (N ₂)	300 ppm			1.0 ppm	MAX300-LG
Argon (Ar)	300 ppm			0.02 ppm	MAX300-LG
Methane (CH ₄)	100 ppm	0.2 ppm 0.1 ppm	Spark CH ₄ Prismatic 3	1.0 ppm	MAX300-LG
Moisture (H ₂ O)	5 ppm	0.0075 ppm 0.1 ppm	Spark H ₂ O Prismatic 3		
Oxygen (O ₂)	5 ppm	0.003 ppm	HALO OK	1.0 ppm	MAX300-LG
Carbon Dioxide (CO ₂)	2 ppm	0.4 ppm 0.32 ppm	Spark CO ₂ Prismatic 3		
Carbon Monoxide (CO)	0.2 ppm	0.05 ppm 0.05 ppm	HALO 3 CO Prismatic 3		
Formaldehyde (CH ₂ O)	0.2 ppm	0.006 ppm	HALO 3 CH ₂ O	0.02 ppm	MAX300-LG
Formic Acid (CH ₂ O ₂)	0.1 ppm			0.02 ppm	MAX300-LG
Ammonia (NH ₃)	0.1 ppm	0.0003 ppm	HALO 3 NH ₃		
Total Hydrocarbons, ex. CH ₄	2 ppm			0.05 ppm	GC
Total Sulfur compounds (e.g. H_2S , COS, CS_2 ,)	0.004 ppm			0.002 ppm	GC
Halogenated compounds (e.g. HBr, HCl, $Cl_2,$)	0.05 ppm			0.01 ppm	MAX300-LG

Comparison of H₂ Purity Monitoring Solutions

Total Solution for Hydrogen Purity

Cover 13 critical contaminants with only three high-performance instruments!

MAX300-LG Quadrupole Mass Spectrometer Prismatic 3 Multispecies CRDS Analyzer Sulfur & THC GC GC Analyzer

Hydrogen Analysis

- Extrel and Tiger Optics analyzers cover all stages of the hydrogen life cycle •
- Mass spectrometer and CRDS for HyCO/SMR process control and purity
- Mass spetrometer and CRDS for quality control (Hydrogen Production, Transportation, Refueling) •

Production

Transportation

Fueling

Advantages of Extrel's Mass Spec Technology

Fast, Complete Analysis in Seconds Flexibility: Can Measure Any Gas or Vapor

Full, Speciated Composition

Ultra-High Sensitivity Down to PPB Levels

Linear Dynamic Range from Trace Levels to 100%

()

Multi-Species Detection Requiring Fewer Analyzers

Advantages of Tiger's CRDS Technology

High Accuracy, Specificity & Stability

Rapid Deployment & Fast Speed of Response

Versatility & Ease of Use

Unparalleled Sensitivity

Outstanding Reliability

Exceptionally Low Cost of Ownership

Conclusions

- Process Insights provides the ideal <u>fully integrated</u> solution for monitoring contaminants in fuel-cell hydrogen with the powerful combination of Tiger Optics' CRDS and Extrel's MS
- Detection limits are perfectly-suited to qualify hydrogen for compliance with SAE J2719 and ISO 14687
- Save manpower and operating cost with easy to use, lowmaintenance analytical instruments
- Multi-species analyzers dramatically reduce the number of required instruments for your laboratory setup
- Ideal for remote operations

Resources & References

- ASTM Standard for Analysis of Fuel Cell Hydrogen using CRDS, D7941/D7941M-14 http://www.astm.org/Standards/D7941.htm
- SAE J2719 Impurity Limits for Fuel Cell Hydrogen https://www.sae.org/standards/content/j2719_202003/
- NREL Study "H2FIRST Hydrogen Contaminant Detector Task" http://www.nrel.gov/docs/fy15osti/64063.pdf
- Tiger Optics Brochure "Advanced Spectroscopic Solutions for Fuel-Cell Hydrogen Analysis" https://www.tigeroptics.com/files/media/tigeroptics/products/Brochures/ Process_Insights_Fuel_Cell_App_Brochure.pdf

THANK YOU

a Process Insights Brand