

TOPSOE

Joachim Harteg Jacobsen

15 June 2022

TOPSOE AT A GLANCE

Topsoe is a leading developer and provider of solutions and technologies to produce fuels and chemicals essential to the energy transition. For more than 80 years, we have been perfecting chemistry to help industries produce more efficiently. Today, it is our ambition to lead the global transition of heavy industry and transport to a zerocarbon future.

Technology leader in

Hydrogen **Ammonia Methanol** Renewable diesel

Founded 1940

6,225 In revenue (DKK million)

Los Angeles

Edmonton

Houston

Mexico City

903 **EBIT** before

(DKK million)

Rio de Janeiro

Buenos Aires

Frederikssund Copenhagen

Essen

Manama 🛂

Khobar

2,133 employees

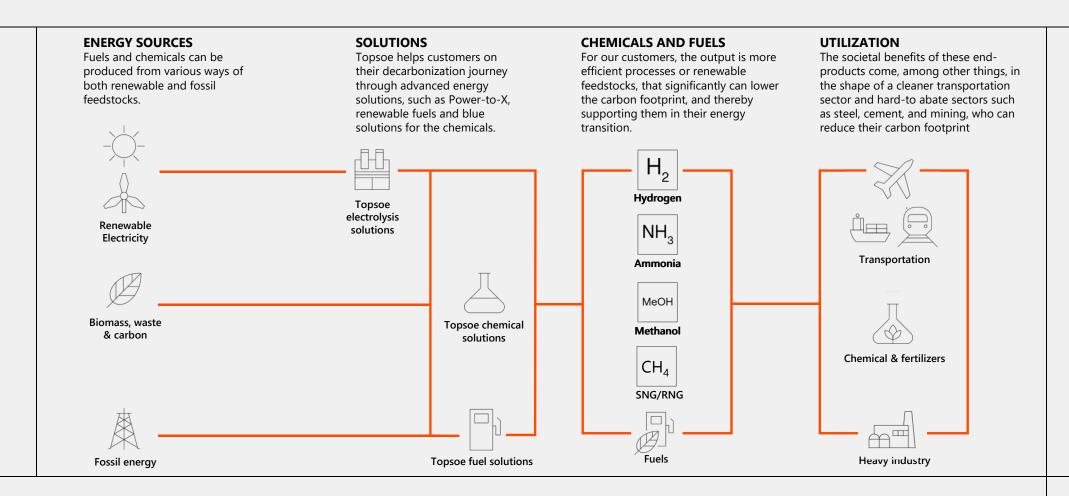
Beijing

Perth

Suzhou Shanghai New Delhi

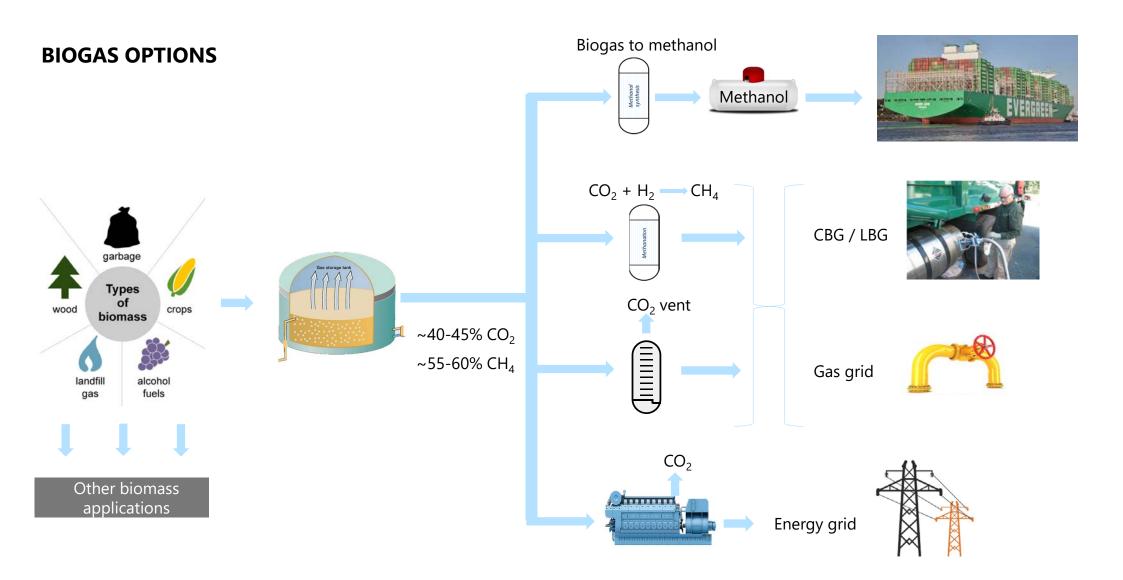
Jakarta

Kuala Lumpur



9% Of revenue invested in R&D special items

Moscow


TOPSOE Confidential © Topsoe A/S. All rights reserved. May 4, 2022

TOPSOE SOLUTIONS ACCELERATE THE ENERGY TRANSITION

TOPSOE Confidential © Topsoe A/S. All rights reserved. April 28, 2022

3

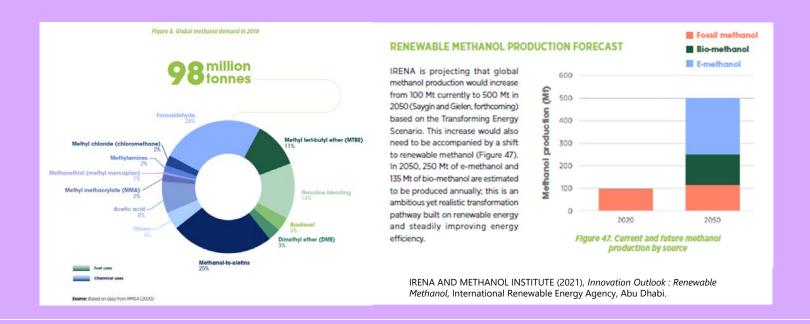
STOICHIOMETRY

HOW MUCH HYDROGEN OR METHANE DO YOU NEED TO UPGRADE THE CO2?

UPGRADING THE CO2 TO

METHANOL:

EACH CO2 NEEDS 3 × (CH4 OR H2)

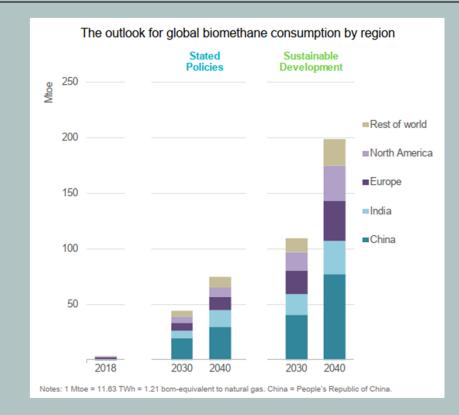

METHANE:

EACH CO2 NEEDS 4 × H2

METHANOL A BULK CHEMICAL AND FUEL

Bulk chemical

- Current global market is ~100 million ton/yr and growing at ~3% / yr
- Prices of "grey" methanol varies with gas price in the range 300-800 USD / ton, currently in the high end


BIOMETHANE: FUEL AND FEED FOR GREEN CHEMICALS

Current market and future and applications:

- Around 90% of biomethane currently comes from biogas upgrading.
- Gas injection to remain predominant with possibilities for downstream refining into various chemicals

Zooming in:

• Europe – REpowerEU aims at 30 billion m³ biomethane by 2030.

IEA (2020) - Outlook for biogas and Biomethane: Prospects for organic growth. All rights reserved

Topsoe technology leader in methanol production

Location	Feedstock	Capacity	Start up
Turkmengas, Akhal Velayat, Turkmenistan	Natural gas	5200 MTPD	2019
Shchekino Azot, Shchekino, Tula, Russia	Natural gas	1350 MTPD	2018
Celanese Ltd., Texas, USA	Natural gas	3700 MTPD	2016
Gujarat State Fertilizers and Chemicals, Ltd., Vadodara, India	Natural gas	525 MTPD	2013
Guizhou Tianfu Chemical Co. Ltd., Guizhou, P. R. China	Coal gasification	750 MTPD	2011
Fanavaran Petrochemical Company, Bandar Imam, Iran	Natural gas + CO2	3030 MTPD	2004
Sichuan Lutianhua Stock. Co., Ltd., Sichuan, P. R. China	Synthesis gas	136 MTPD	2003
Petronas Fertiliser (Kedah) Sdn Bhd, Kedah, Malaysia	Synthesis gas	200 MTPD	1998

Selected reference plants by Topsoe design out of 50+ plants by 2021

Industrial methanol production

Recycle gas = CO₂, CO, H₂, H₂O

Primary feed:

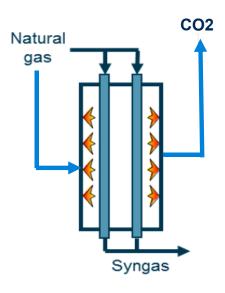
- NG
- Biogas
- Gassified Biomass or Coal

Reforming front-end

Synthesis gas = CO₂, CO, H₂, H₂O

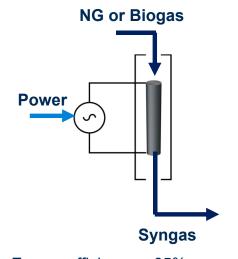
For eMethanol CO₂+ H₂

Methanol Synthesis

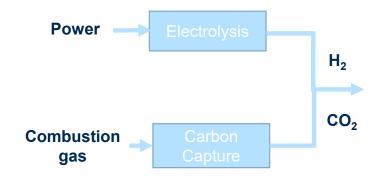

Separation

Methanol CH₃OH

Heat / power


ALTERNATIVES FOR METHANOL SYNTHESIS FRONT-END

Conventional SMR


Energy efficiency ≈ 60% Gas used as source of heat

Topsoe eREACT™

Energy efficiency ≈ 65% Power used as source of heat

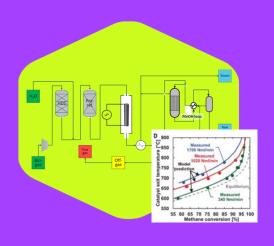
Electrolysis / eMethanol

LT electrolysis:

Energy efficiency ≈ 44%

SOEC

Energy efficiency ≈ 51%


All energy input as power

TOPSOE Confidential

© Topsoe A/S. All rights reserved.

April 28, 2022

EREACT™ METHANOL ROADMAPFOR DEMONSTRATION AND TOWARDS COMMERCIALIZATION

2022:

FID ready for commercial Biogas to methanol plant

2024:

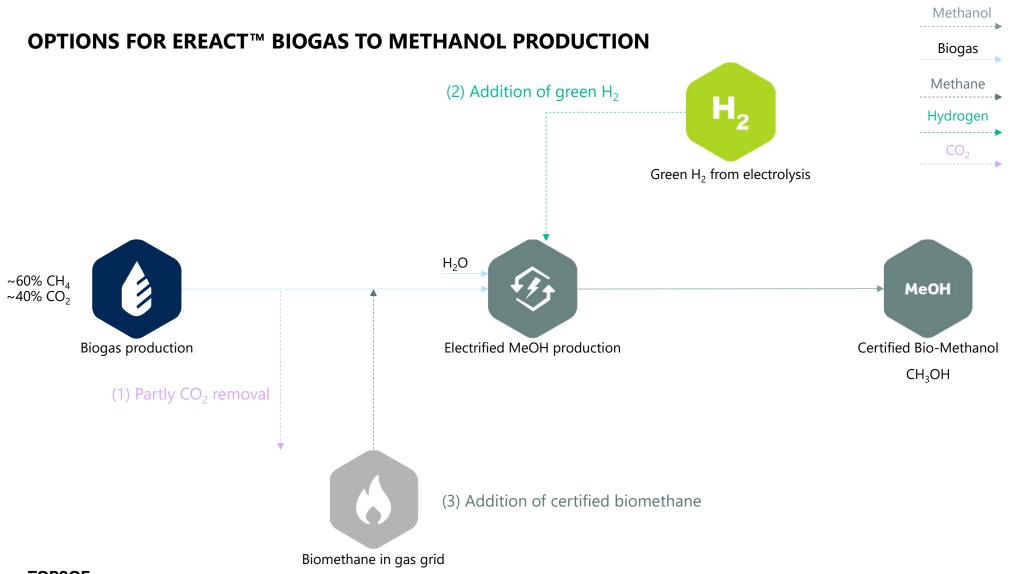
Start of operation

Proof of concept

Demonstration project (Biogas

→ MeOH)

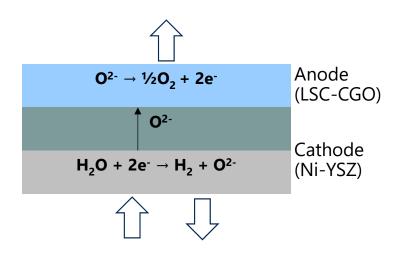
Commercialization
Biogas MeOH

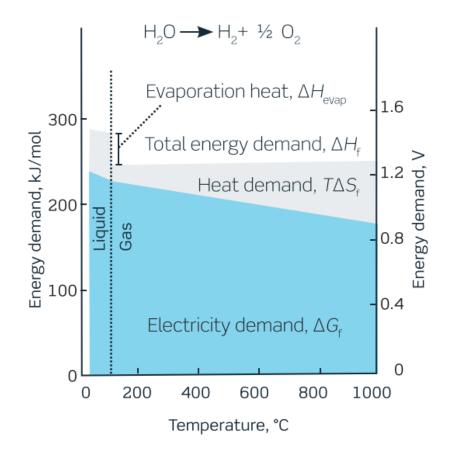

еипр

2013 - 2018

2019-2021

eupp


2022→


HIGH T SOEC MOST ENERGY EFFICIENT ELECTROLYZER

SPECIALLY WELL SUITED FOR INTEGRATION WITH HEAT GENERATING PROCESSES

Stack power consumption 3.1 kWh/Nm³ H₂

ENERGY CONSUMPTIONS AND EFFICIENCIES – INDICATIVE NUMBERS POWER UPGRADE OF A BIOGAS OF 60% CH4 / 40% CO2 TO CHEMICAL GRADE METHANOL

			Energy input per LHV output		Energy efficiencies	
			BG Gas LHV input	Total Power input	Energy Efficiency to product	District heat output (+/- 50%)
L			MW / MW	MW / MW	%	%
	Methanol via eREACT™	Partial CO2 vent	0,97	0,52	67%	~10 %
		+ SOEC H2	0,78	0,76	65%	~10 %
		+ LT* H2	0,78	0,83	62%	~10 %
		+ CH4	0,97	0,52	67%	~10 %
	eMethanol via BG separation	+ SOEC H2	-	1,97	51% **	~10%
		+ LT* H2	-	2,28	44% **	~10%

^{*} Low temperature electrolysis

^{**} Not including unreacted CH4

Topsoe's position in methanation

Gobigas, Goteborg Energi

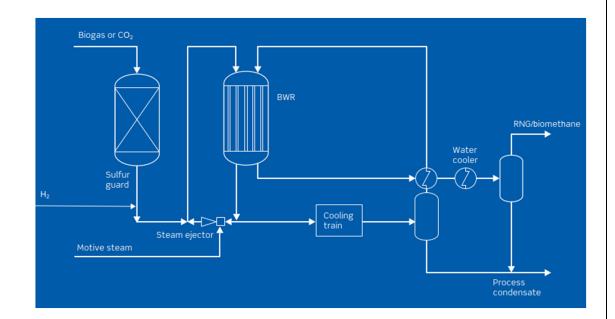
Location	Feedstock	Capacity	Start up
CPI, Xingang, China	Coal gasification	2 x 131,800 Nm³/h	2024
Huieng, Inner Mongolia, China	Coal gasification	115,600 Nm³/h	2021
Wulan, Inner Mongolia, China	Coal gasification	78,700 Nm³/h	2020
Shandong Iron and Steel group Co., Ltd., Rizhao, China	Coke-oven-gas	2 x 55,000 Nm³/h	2018
Aarhus University/EUDP, Foulum, Denmark	Biogas + power (SOEC)	10 Nm³/h	2016
Daosheng, Shanxi, China	Coke-oven-gas	27,500 Nm³/h	2015
Göteborg Energi (GoBiGas), Göteborg, Sweden	Biomass gasification	2,200 Nm³/h	2014
Petrochina, Inner Mongolia (Wuhai), China	Coke-oven-gas	2 x 56,300 Nm³/h	2013

Selected reference plants by Topsoe design

BIOGAS UPGRADE II

A FULL VALUECHAIN FROM BIOGAS TO GAS GRID

- Biogas to SNG (Substitute Natural Gas) via SOEC (Solid Oxide Electrolysis Cell) and methanation of the CO₂ in the biogas
- SOEC is taken to TRL 8
- Methanation taken to TRL8
- Economic analysis has shown that upgrading can compete with traditional upgrade by CO₂ removal
- Carbon utilization is better and CO2 emission avoided



16

BIOGAS OR BIOCO2 METHANATION

HYDROGEN SUPPLEMENT FROM ELECTROLYSIS

- Carbon source: Biogas mixture or pure CO₂
- Hydrogen addition to achieve: $H_2/CO_2 = 4$
- Isothermal reactor by TREMP[™] design
- Integrate with SOEC to achieve an unmatched system efficiency.

17

ENERGY CONSUMPTIONS AND EFFICIENCIES – INDICATIVE NUMBERS POWER UPGRADE OF A BIOGAS OF 60% CH4 / 40% CO2

		Energy input per LHV output		Energy efficiencies	
		BG Gas LHV input	Total Power input	Energy Efficiency to product	District heat output (+/- 50%)
		MW / MW	MW / MW	%	%
Methanol via eREACT™	Partial CO2 vent	0,97	0,52	67%	~10 %
	+ SOEC H2	0,78	0,76	65%	~10 %
	+ LT H2	0,78	0,83	62%	~10 %
	+ CH4	0,97	0,52	67%	~10 %
eMethanol via BG separation	+ SOEC H2	-	1,97	51% **	~10%
	+ LT* H2	-	2,28	44% **	~10%
methanation	+ SOEC H2	-	1,49	67% **	~10%
	+ LT* H2	-	1,97	51% **	~20%

^{*} Low temperature electrolysis ** Not including unreacted CH4

OUTLOOK AND SUMMARY

- BIOGENIC CO2 WILL BE A VALUABLE RESOURCE FOR OUR GREEN ENERGY TRANSITION SERVING THE HARD-TO-ABATE SECTORS
- UPGRADING BIOGAS BY RENEWABLE POWER TO METHANE OR METHANOL ARE VIABLE ROUTES
- TOPSOE HAS ENERGY EFFICIENT TECHNOLOGIES AVAILABLE FOR BOTH ROUTES
- THE NOVEL EREACT™ TECHNOLOGY ENABLES FULL BIOGAS CONVERSION TO METHANOL WITH HIGH ENERGY EFFICIENCY AND NO PROCESS CO2 EMISSION
- SOEC TECHNOLOGY ENABLES FULL BIOGAS CONVERSION TO METHANE WITH HIGH ENERGY EFFICIENCY BY USING THE HEAT OF METHANATION FOR HYDROGEN PRODUCTION

QUESTIONS?

April 28, 2022

TOPSOE

Confidential

© Topsoe A/S. All rights reserved.