

Towards gigascale PtX Safety concepts and constraints

3rd European Conference Hydrogen & P2X

Dr. Felix Weise Thursday, June 16, 2022

World Hydrogen production by source Outlook forecast (best estimate) vs. Pathway to Net Zero

Only includes pure hydrogen supply. Historical data source: IEA Future of Hydrogen (2019)

The trilemma for scaling hydrogen... ...chose two of the three below?

Affordable and available - What about safety? Safety KPIs or success criteria 1. Incidents: frequency and consequence 2. Acceptance criteria 3. Inherently safe design Safety 4. Distances and barriers 5. Perceived risk and hazards

Secure and reliable

Green and clean

The challenge ahead – risk profiles and hazards

"Inside the fence"

- 1. Decarb. fossil H2 Existing use, new H2
- 2. Fuel switching New use, and new H2

"Outside the fence"

- 1. New use and in new locations
- 2. New storage and transport

Gas Release

Hazards from Flammable Gases

Design to prevent or break the chain of events

Techniques are nothing new – standard for any oil & gas project

The key difference is the properties of hydrogen

Natural gas versus hydrogen – selected features

	Hydrogen	Natural gas
Flammable range	Ignites in a much wider mix range (4% to 75% of volume)	Narrow flammability mix range (5,3% to 15% of volume)
Ignition energy	Ignitable by low energy sources - phones, and human static electricity (0.020mJ)	10 times higher than H2 (0.29mJ)
Flame velocity	3.2 m/s 8 times faster flame velocity than NG - much higher explosion pressure potential	0.4 m/s
Dispersion	Disperses much faster than NG. Limited potential for ground accumulation	Large gas cloud may form. In some conditions as heavy gas on the ground (LNG)

Key Hydrogen Properties - Burning Velocity

Hydrogen has a much higher burning velocity than hydrocarbons

Again, the higher the burning velocity, the more severe the explosion

However, if the hydrogen concentration is kept below ~15% then same severity than natural gas

Hydrogen Outflow

- Hence, energy release rate from same hole size and pressure starts out very similar to methane
- Vessels containing the same pressure will depressurise in a shorter time for hydrogen compared to methane
 - Potentially bigger flammable clouds
 - Shorter duration fire loads

20 mm release from 27 m³ vessel @150 bar

Major Hazard Management

What has to be done?

Formal and informal acceptance criteria, inside and outside the fence

Explosion and fire protection

Primary Avoidance of explosive mixtures Secondary Avoidance of ignition sources

Tertiary Inherently safe design with barriers

Design Philosophy - Hierarchy

- Risk reduction measures have a hierarchy in terms of preference, e.g.:
 - Avoidance elimination of the hazard
 - Prevention reducing the likelihood of loss of containment (LoC)
 - Control limitation of scale or duration of LoC event
 - Mitigation protection from effects, avoidance of escalation from LoC event
 - Emergency Response e.g. evacuation of people, involvement of emergency services
- In reality all of these measures are generally used
 - Major accidents are rare, so personal experience is a poor guide to risk
 - Control risks by ensuring 'barriers' to a major accident are maintained

Design Philosophy - Barriers

Design Philosophy – Inherently Safer

- Though definitions vary, 'inherently safer design' involves design changes that improve safety without the need for active protective systems
- Where practicable, inherently safer design can be very effective and has reduced uncertainty
- For example:
 - Reduction in inventory or pressure
 - Separation of hazardous inventories from people
 - Passive barriers that prevent escalation
 - The engineered design naturally results in reduced consequences and greater safety
 - Using our understanding of hydrogen properties to reduce risk

Critical leak and dispersion effects in open areas

- Without blastwalls
- With blastwall all around

- Leak rates from 0.1 kg/s can cause critical cloud sizes (1 kg/s for methane)
- Leak duration from 1-3 s can create critical cloud sizes (10-20 s for methane)
- · Gas clouds can collect at lower elevations due to jet release

Effect of Burning Velocity

- Fuel concentration also affects the burning rate and, as a consequence, the maximum pressure
- Illustrate with tests in a mock H₂ refuelling station

26% H₂

DNV ©

Methane & Hydrogen Explosion Comparison

Methane and Hydrogen releases at same pressure and with same hole size

Methane (10%vol layer)

Hydrogen (20%vol layer)

Siting study is critical to ensure inherent safety Also consider total risk from all facilities

PtX wind: on- and offshore centralized and distributed

Centralized

Decentralized

Offshore

Onshore

19

Risk & Risk Perception

- Maintaining public confidence will be important for some applications
- Risk perception will be a key factor
- Need to recognise there are significant uncertainties

HOME > GENERAL > RECENT EXPLOSIONS SHUTDOWN HYDROGEN VEHICLE REFUELING IN NORCAL AND NORWAY

Recent explosions shutdown hydrogen vehicle refueling in NorCal and Norway

Explosions at a hydrogen fueling depot in Northern California and at a retail station in Norway have left owners of fuel cell cars in those regions without their usual source of refueling.

Monday's explosion in Sandvika, Norway near Oslo occurred at a hydrogen station operated by the company Uno-X adjacent to a major shopping center at around 5:30pm local time. As a result, some of the company's other fuel cell stations have been taken offline until an investigation reveals more information about the cause of the explosion.

Summary – PtX and Hydrogen upscaling

Safety in Design

Management through barriers to prevent a major accident

Hierarchy from avoidance to emergency response

Inherently safer design is important and not necessarily expensive in early design

Hydrogen Properties

Hydrogen has high reactivity and is much more detonable than hydrocarbons

Need to avoid situations where high (>15%) hydrogen concentrations are present as much as practicable Use natural buoyancy where possible

Design to Operations

Lack of standardisation, knowledge and history introduces uncertainty

Original design intent needs to be communicated and embedded in procedures and maintenance

Risk perception is important for future hydrogen developments

Questions?

felix.weise@dnv.com

Head of Risk Management, Energy Systems Northern Europe

www.dnv.com

DN